skip to main content


Search for: All records

Creators/Authors contains: "Fukui, Akihiko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The youngest (<50 Myr) planets are vital to understand planet formation and early evolution. The 17 Myr system HIP 67522 is already known to host a giant (≃10R) planet on a tight orbit. In their discovery paper, Rizzuto et al. reported a tentative single-transit detection of an additional planet in the system using TESS. Here, we report the discovery of HIP 67522c, a 7.9Rplanet that matches with that single-transit event. We confirm the signal with ground-based multiwavelength photometry from Sinistro and MuSCAT4. At a period of 14.33 days, planet c is close to a 2:1 mean-motion resonance with b (6.96 days or 2.06:1). The light curve shows distortions during many of the transits, which are consistent with spot-crossing events and/or flares. Fewer stellar activity events are seen in the transits of planet b, suggesting that planet c is crossing a more active latitude. Such distortions, combined with systematics in the TESS light-curve extraction, likely explain why planet c was previously missed.

     
    more » « less
  2. Abstract

    We present a detailed study of the MASTER OT J030227.28$+$191754.5 outburst in 2021–2022, which reached an amplitude of $10.2\:$mag and a duration of $60\:$d. The detections of (1) the double-peaked optical emission lines, and (2) the early and ordinary superhumps, established that MASTER OT J030227.28$+$191754.5 is an extremely energetic WZ Sge-type dwarf nova (DN). Based on the superhump observations, we obtained its orbital period and mass ratio as $0.05986(1)\:$d and 0.063(1), respectively. These values are within a typical range for low-mass-ratio DNe. According to the binary parameters derived based on the thermal–tidal instability model, our analyses showed that (1) the standard disk model requires an accretion rate $\simeq\!\! 10^{20}\:$g$\:$s$^{-1}$ to explain its peak optical luminosity, and (2) large mass was stored in the disk at the outburst onset. These factors cannot be explained solely by the impact of its massive ($\gtrsim\!\! 1.15\, M_{\odot }$) primary white dwarf implied by Kimura et al. (2023, ApJ, 951, 124). Instead, we propose that the probable origin of this enormously energetic DN outburst is the even lower quiescence viscosity than other WZ Sge-type DNe. This discussion is qualitatively valid for most possible binary parameter spaces unless the inclination is low enough ($\lesssim\!\! 40^\circ$) for the disk to be bright, explaining the outburst amplitude. Such low inclinations, however, would not allow detectable amplitude of early superhumps in the current thermal–tidal instability model. The optical spectra at outburst maximum showed strong emission lines of the Balmer, He i, and He ii series, the core of which is narrower than $\sim \! 800\:$km$\:$s$^{-1}$. Considering its binary parameters, a Keplerian disk cannot explain this narrow component, but the presumable origin is disk winds.

     
    more » « less
  3. Abstract

    M-dwarf stars provide us with an ideal opportunity to study nearby small planets. The HUnting for M Dwarf Rocky planets Using MAROON-X (HUMDRUM) survey uses the MAROON-X spectrograph, which is ideally suited to studying these stars, to measure precise masses of a volume-limited (<30 pc) sample of transiting M-dwarf planets. TOI-1450 is a nearby (22.5 pc) binary system containing a M3 dwarf with a roughly 3000 K companion. Its primary star, TOI-1450A, was identified by the Transiting Exoplanet Survey Satellite (TESS) to have a 2.04 days transit signal, and is included in the HUMDRUM sample. In this paper, we present MAROON-X radial velocities (RVs) which confirm the planetary nature of this signal and measure its mass at nearly 10% precision. The 2.04 days planet, TOI-1450A b, hasRb= 1.13 ± 0.04RandMb= 1.26 ± 0.13M. It is the second-lowest-mass transiting planet with a high-precision RV mass measurement. With this mass and radius, the planet’s mean density is compatible with an Earth-like composition. Given its short orbital period and slightly sub-Earth density, it may be amenable to JWST follow-up to test whether the planet has retained an atmosphere despite extreme heating from the nearby star. We also discover a nontransiting planet in the system with a period of 5.07 days and aMsinic=1.53±0.18M. We also find a 2.01 days signal present in the systems’s TESS photometry that likely corresponds to the rotation period of TOI-1450A’s binary companion, TOI-1450B. TOI-1450A, meanwhile, appears to have a rotation period of approximately 40 days, which is in line with our expectations for a mid-M dwarf.

     
    more » « less
  4. ABSTRACT

    Detailed atmospheric characterization of exoplanets by transmission spectroscopy requires careful consideration of stellar surface inhomogeneities induced by star-spots. This effect is particularly problematic for planetary systems around M-dwarfs, and their spot properties are not fully understood. We investigated the stellar activity of the young M-dwarf K2-25 and its effect on transit observations of the sub-Neptune K2-25 b. From multiband monitoring observations of stellar brightness variability using ground-based telescopes and Transiting Exoplanets Survey Satellite, we found that the temperature difference between the spots and photosphere is <190 K and the spot covering fraction is <61 per cent (2σ). We also investigated the effect of starspot activity using multiepoch, multiband transit observations. We rule out cases with extremely low spot temperatures and large spot covering fractions. The results suggest that spots could distort the transmission spectrum of K2-25 b by as much as ∼100 ppm amplitude, corresponding to the precision of JWST/NIRSPEC of the target. Our study demonstrates that simultaneous multiband observations with current instruments can constrain the spot properties of M-dwarfs with good enough precision to support atmospheric studies of young M-dwarf planets via transmission spectroscopy.

     
    more » « less
  5. We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$) M dwarf at the bulge distance ($7.6 \pm 1.0$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $\sim 1.2$ and $\sim 0.9 \mathrm{ M}_{\odot }$, respectively, and the orbital period is $70 \pm 10$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses. 
    more » « less
    Free, publicly-accessible full text available August 21, 2025
  6. Abstract We measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3–4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3–4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43 M Jup planet orbiting a 0.56 ± 0.06 M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun. 
    more » « less
  7. Aims.We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration.

    Methods.Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner= [0.9740 ± 0.0083, (2.46 ± 1.07) × 10−5], (s, q)intermediate= [0.9779 ± 0.0017, (1.56 ± 0.25) × 10−5], and (s, q)outer= [0.9894 ± 0.0107, (2.31 ± 1.29) × 10−5], wheresandqdenote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage.

    Results.Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2–6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48–0.51)M, and that of the planet’s mass spans a range of (2.6–4.0)ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  8. Aims.We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves.

    Methods.We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics.

    Results.The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M,Mplanet/MJ,q/10−3,DL/kpc) = (0.58−0.30+0.33, 10.71−5.61+6.17, 17.61 ± 2.25, 6.67−1.30+0.93) for KMT-2020-BLG-0757, (0.53−0.31+0.31, 1.12−0.65+0.65, 2.01 ± 0.07, 6.66−1.84+1.19) for KMT-2022-BLG-0732, (0.42−0.23+0.32, 6.64−3.64+4.98, 15.07 ± 0.86, 7.55−1.30+0.89) for KMT-2022-BLG-1787, and (0.32−0.19+0.34, 4.98−2.94+5.42, 8.74 ± 0.49, 6.27−1.15+0.90) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  9. Aims.We undertake a project to reexamine microlensing data gathered from high-cadence surveys. The aim of the project is to reinvestigate lensing events whose light curves exhibit intricate anomaly features that are associated with caustics, but lack prior proposed models that would explain these features.

    Methods.Through detailed reanalyses considering higher-order effects, we determined that it is vital to account for the orbital motions of lenses to accurately explain the anomaly features observed in the light curves of the lensing events OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136.

    Results.We estimated the masses and distances to the lenses by conducting Bayesian analyses using the lensing parameters of the newly found lensing solutions. These analyses showed that the lenses of the events OGLE-2018-BLG-0971 and MOA-2023-BLG-065 are binaries composed of M dwarfs, while the lens of OGLE-2023-BLG-0136 likely is a binary composed of an early K-dwarf primary and a late M-dwarf companion. For all lensing events, the probability that the lens resides in the bulge is considerably higher than that it is located in the disk.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  10. Aims.We analyze the anomalies appearing in the light curves of the three microlensing events MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735. The anomalies exhibit common short-term dip features that appear near the peak.

    Methods.From the detailed analyses of the light curves, we find that the anomalies were produced by planets accompanied by the lenses of the events. For all three events, the estimated mass ratios between the planet and host are on the order of 10−4:q ~8 × 10−4for MOA-2022-BLG-563L,q~ 2.5 × 10−4for KMT-2023-BLG-0469L, andq~ 1.9 × 10−4for KMT-2023-BLG-0735L. The interpretations of the anomalies are subject to a common inner-outer degeneracy, which causes ambiguity when estimating the projected planet-host separation.

    Results.We estimated the planet mass,Mp, host mass,Mh, and distance,DL, to the planetary system by conducting Bayesian analyses using the observables of the events. The estimated physical parameters of the planetary systems are (Mh/M,Mp/MJ,DL/kpc) = (0.48−0.30+0.36, 0.40−0.25+0.31, 6.53−1.57+1.12) for MOA-2022-BLG-563L, (0.47−0.26+0.35, 0.124−0.067+0.092, 7.07−1.19+1.03) for KMT-2023-BLG-0469L, and (0.62−0.35+0.34, 0.125−0.070+0.068, 6.26−1.67+1.27) for KMT-2023-BLG-0735L. According to the estimated parameters, all planets are cold planets with projected separations that are greater than the snow lines of the planetary systems, they have masses that lie between the masses of Uranus and Jupiter of the Solar System, and the hosts of the planets are main-sequence stars that are less massive than the Sun. In all cases, the planetary systems are more likely to be in the bulge with probabilitiesPbulge= 64%, 73%, and 56% for MOA-2022-BLG-563, KMT-2023-BLG-0469, and KMT-2023-BLG-0735, respectively.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025