Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Changes in behavioral state, such as arousal and movements, strongly affect neural activity in sensory areas, and can be modeled as long-range projections regulating the mean and variance of baseline input currents. What are the computational benefits of these baseline modulations? We investigate this question within a brain-inspired framework for reservoir computing, where we vary the quenched baseline inputs to a recurrent neural network with random couplings. We found that baseline modulations control the dynamical phase of the reservoir network, unlocking a vast repertoire of network phases. We uncovered a number of bistable phases exhibiting the simultaneous coexistence of fixed points and chaos, of two fixed points, and of weak and strong chaos. We identified several phenomena, including noise-driven enhancement of chaos and ergodicity breaking; neural hysteresis, whereby transitions across a phase boundary retain the memory of the preceding phase. In each bistable phase, the reservoir performs a different binary decision-making task. Fast switching between different tasks can be controlled by adjusting the baseline input mean and variance. Moreover, we found that the reservoir network achieves optimal memory performance at any first-order phase boundary. In summary, baseline control enables multitasking without any optimization of the network couplings, opening directions for brain-inspired artificial intelligence and providing an interpretation for the ubiquitously observed behavioral modulations of cortical activity.more » « less
-
Soltani, Alireza (Ed.)Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous irregular activity but, in standard balanced E-I models, this requires that an extremely strong feedforward bias current be included along with the recurrent excitation and inhibition. The absence of experimental evidence for such large bias currents inspired us to examine an alternative regime that exhibits asynchronous activity without requiring unrealistically large feedforward input. In these networks, irregular spontaneous activity is supported by a continually changing sparse set of neurons. To support this activity, synaptic strengths must be drawn from high-variance distributions. Unlike standard balanced networks, these sparse balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis to illustrate the properties of these networks.more » « less