skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Furche, Filipp"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To expand the range of donor atoms known to stabilize 4fn5d1Ln(ii) ions beyond C, N, and O first row main group donor atoms, the Ln(iii) terphenylthiolate iodides, LnIII(SAriPr6)2I (AriPr6= C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to LnII(SAriPr6)2complexes.

    more » « less
    Free, publicly-accessible full text available April 23, 2025
  2. The synthesis of previously unknown bis(cyclopentadienyl) complexes of the first transition metal, i.e., Sc(II) scandocene complexes, has been investigated using C5H2(tBu)3 (Cpttt), C5Me5 (Cp*), and C5H3(SiMe3)2 (Cp″) ligands. Cpttt 2ScI, 1, formed from ScI3 and KCpttt, can be reduced with potassium graphite (KC8) in hexanes to generate dark-red crystals of the first crystallographically characterizable bis(cyclopentadienyl) scandium(II) complex, Cpttt 2Sc, 2. Complex 2 has a 170.6° (ring centroid)-Sc-(ring centroid) angle and exhibits an eight-line EPR spectrum characteristic of Sc(II) with Aiso = 82.6 MHz (29.6 G). It sublimes at 200 °C at 10−4 Torr and has a melting point of 268−271 °C. Reductions of Cp*2ScI and Cp″2ScI under analogous conditions in hexanes did not provide new Sc(II) complexes, and reduction of Cp*2ScI in benzene formed the Sc(III) phenyl complex, Cp*2Sc(C6H5), 3, by C−H bond activation. However, in Et2O and toluene, reduction of Cp*2ScI at −78 °C gives a dark-red solution, 4, which displays an eight-line EPR pattern like that of 1, but it did not provide thermally stable crystals. Reduction of Cp″2ScI, in THF or Et2O at −35 °C in the presence of 2.2.2-cryptand, yields the green Sc(II) metallocene iodide complex, [K(crypt)][Cp″2ScI], 5, which was identified by X-ray crystallography and EPR spectroscopy and is thermally unstable. The analogous reaction of Cp*2ScI with KC8 and 18-crown-6 in Et2O gave the ligand redistribution product, [Cp*2Sc(18- crown-6-κ2O,O′)][Cp*2ScI2], 6, as the only crystalline product. Density functional theory 
    more » « less
    Free, publicly-accessible full text available February 7, 2025
  3. An analytical implementation of static dipole polarizabilities within the generalized Kohn–Sham semicanonical projected random phase approximation (GKS-spRPA) method for spin-restricted closed-shell and spin-unrestricted open-shell references is presented. General second-order analytical derivatives of the GKS-spRPA energy functional are derived using a Lagrangian approach. By resolution-of-the-identity and complex frequency integration methods, an asymptotic [Formula: see text] scaling of operation count and [Formula: see text] scaling of storage is realized, i.e., the computational requirements are comparable to those for GKS-spRPA ground state energies. GKS-spRPA polarizabilities are assessed for small molecules, conjugated long-chain hydrocarbons, metallocenes, and metal clusters, by comparison against Hartree–Fock (HF), semilocal density functional approximations (DFAs), second-order Møller–Plesset perturbation theory, range-separated hybrids, and experimental data. For conjugated polydiacetylene and polybutatriene oligomers, GKS-spRPA effectively addresses the “overpolarization” problem of semilocal DFAs and the somewhat erratic behavior of post-PBE RPA polarizabilities without empirical adjustments. The ensemble averaged GKS-spRPA polarizabilities of sodium clusters (Na n for n = 2, 3, …, 10) exhibit a mean absolute deviation comparable to PBE with significantly fewer outliers than HF. In conclusion, analytical second-order derivatives of GKS-spRPA energies provide a computationally viable and consistent approach to molecular polarizabilities, including systems prohibitive for other methods due to their size and/or electronic structure. 
    more » « less
  4. Abstract A multivariate adiabatic connection (MAC) framework for describing dispersion interactions in a system consisting of N non-overlapping monomers is presented. By constraining the density to the physical ground-state density of the supersystem, the MAC enables a rigorous separation of induction and dispersion effects. The exact dispersion energy is obtained from the zero-temperature fluctuation–dissipation theorem and partitioned into increments corresponding to the interaction energy gained when an additional monomer is added to a K -monomer system. The total dispersion energy of an N -monomer system is independent of any partitioning into subsystems. This statement of dispersion size consistency is shown to be an exact constraint. The resulting additive separability of the dispersion energy results from multiplicative separability of the generalized screening factor defined as the inverse generalized dielectric function. Many-body perturbation theory (MBPT) is found to violate dispersion size-consistency because perturbative approximations to the generalized screening factor are nonseparable; on the other hand, random phase approximation-type methods produce separable generalized screening factors and therefore preserve dispersion size-consistency. This result further explains the previously observed increase in relative errors of MBPT for dispersion interactions as the system size increases. Implications for electronic structure theory and applications to supramolecular materials and condensed matter are discussed. 
    more » « less