Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Streptococcus agalactiaeor Group BStreptococcus(GBS) is a Gram‐positive bacterial pathobiont that is the etiological cause of severe perinatal infections. GBS can colonize the vagina of pregnant patients and invade tissues causing ascending infections of the gravid reproductive tract that lead to adverse outcomes including preterm birth, neonatal sepsis, and maternal or fetal demise. Additionally, transmission of GBS during labor or breastfeeding can also cause invasive infections of neonates and infants. However, human milk has also been shown to have protective effects against infection; a characteristic that is likely derived from antimicrobial and immunomodulatory properties of molecules that comprise human milk. Recent evidence suggests that human milk oligosaccharides (HMOs), short‐chain sugars that comprise 8–20 % of breast milk, have antimicrobial and anti‐biofilm activity against GBS and other bacterial pathogens. Additionally, HMOs have been shown to potentiate the activity of antibiotics against GBS. This review presents the most recent published work that studies the interaction between HMOs and GBS.more » « less
-
Abstract The members of the infant microbiome are governed by feeding method (breastmilk vs. formula). Regardless of the source of nutrition, a competitive growth advantage can be provided to commensals through prebiotics – either human milk oligosaccharides (HMOs) or plant oligosaccharides that are supplemented into formula. To characterize how prebiotics modulate commensal – pathogen interactions, we have designed and studied a minimal microbiome where a pathogen,Streptococcus agalactiaeengages with a commensal,Streptococcus salivarius. We discovered that whileS. agalactiaesuppresses the growth ofS. salivariusvia increased lactic acid production, galacto‐oligosaccharides (GOS) supplementation reverses the effect. This result has major implications in characterizing how single species survive in the gut, what niche they occupy, and how they engage with other community members.more » « less
-
Abstract Group BStreptococcus(GBS) is an encapsulated Gram‐positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short‐chain sugars that have recently been shown to possess antimicrobial and anti‐biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO‐dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular‐type‐ and sequence‐type‐specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST‐1, ST‐12, ST‐19, and ST‐23 strains. Interestingly, CpsIa as well as ST‐7 and ST‐17 were not susceptible to the anti‐biofilm activity of HMOs, underscoring the strain‐specific effects of these important antimicrobial molecules against the perinatal pathogenStreptococcus agalactiae.more » « less
-
Abstract The sorting and assembly machinery (SAM) Complex is responsible for assembling β‐barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block‐face‐scanning electron microscopy and computer‐assisted 3D renderings were employed to compare mitochondrial structure and networking inSam50‐deficient myotubes from mice and humans with wild‐type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography‐Mass Spectrometry‐based metabolomics to explore differential changes in WT andSam50‐deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation inSam50‐deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß‐Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism inSam50‐deficient myotubes. Furthermore, impairment of oxidative capacity was observed uponSam50ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact ofSam50‐deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.more » « less
-
Abstract Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner‐membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3‐month) and aged (2‐year) murine BAT tissue via serial block face‐scanning electron microscopy (SBF‐SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.more » « less
-
Abstract Chronic infection withHelicobacter pyloriincreases risk of gastric diseases including gastric cancer. Despite development of a robust immune response,H. pyloripersists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection withH. pyloristrains which encode thecagType IV Secretion System (cag T4SS). ThecagT4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro‐inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response toH. pyloriinfection, the host produces a variety of antimicrobial molecules, including the iron‐binding glycoprotein, lactoferrin. Our work shows that apo‐lactoferrin exerts antimicrobial activity againstH. pyloriunder iron‐limited conditions, while holo‐lactoferrin enhances bacterial growth. CulturingH. pyloriin the presence of holo‐lactoferrin prior to co‐culture with gastric epithelial cells, results in repression of thecag T4SS activity. Concomitantly, a decrease in biogenesis ofcag T4SS pili at the host‐pathogen interface was observed under these culture conditions by high‐resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro‐inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment ofH. pylori‐related disease.more » « less
An official website of the United States government
