skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaetz, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Webs give a diagrammatic calculus for spaces of $$U_{q}(\mathfrak{sl}_{r})$$-tensor invariants, but intrinsic characterizations of web bases are only known in certain cases. Recently, we introduced hourglass plabic graphs to give the first such $$U_{q}(\mathfrak{sl}_{4})$$-web bases. Separately, Fraser introduced a web basis for Plücker degree two representations of arbitrary $$U_{q}(\mathfrak{sl}_{r})$$. Here, we show that Fraser’s basis agrees with that predicted by the hourglass plabic graph framework and give an intrinsic characterization of the resulting webs. A further compelling feature with many applications is that our bases exhibit rotation-invariance. Together with the results of our earlier paper, this implies that hourglass plabic graphs give a uniform description of all known rotation-invariant $$U_{q}(\mathfrak{sl}_{r})$$-web bases. Moreover, this provides a single combinatorial model simultaneously generalizing the Tamari lattice, the alternating sign matrix lattice, and the lattice of plane partitions. As a part of our argument, we develop properties of square faces in arbitrary hourglass plabic graphs, a key step in our program towards general $$U_{q}(\mathfrak{sl}_{r})$$-web bases. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026