Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 27, 2026
-
Modeling chemical reactions with quantum chemical methods is challenging when the electronic structure varies significantly throughout the reaction and when electronic excited states are involved. Multireference methods, such as complete active space self-consistent field (CASSCF), can handle these multiconfigurational situations. However, even if the size of the needed active space is affordable, in many cases, the active space does not change consistently from reactant to product, causing discontinuities in the potential energy surface. The localized active space SCF (LASSCF) is a cheaper alternative to CASSCF for strongly correlated systems with weakly correlated fragments. The method is used for the first time to study a chemical reaction, namely the bond dissociation of a mono-, di-, and triphenylsulfonium cation. LASSCF calculations generate smooth potential energy scans more easily than the corresponding, more computationally expensive CASSCF calculations while predicting similar bond dissociation energies. Our calculations suggest a homolytic bond cleavage for di- and triphenylsulfonium and a heterolytic pathway for monophenylsulfonium.more » « lessFree, publicly-accessible full text available July 7, 2025
-
Free, publicly-accessible full text available July 11, 2025
-
Iron–sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn–H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.more » « less