Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2024
-
The goal of this work is to detect flaw formation in wire arc additive manufacturing (WAAM). This process uses an electric arc as the energy source in order to melt metallic wire and deposit the new material, similar to metal inert gas (MIG) welding. Industry has been slow to adopt WAAM due to the lack of process consistency and reliability. The WAAM process is susceptible to a multitude of stochastic disturbances that cause instability in the electric arc. These arc instabilities eventually lead to flaw formation such as porosity, spatter, and excessive deviations in the desired geometry. Therefore, the objective of this work is to detect flaw formation using in-situ acoustic (sound) data from a microphone installed near the electric arc. This data was processed using a novel wavelet integrated graph theory approach. This approach detected the onset of multiple types of flaw formations with a false alarm rate of less than 2%. Using this method, this work demonstrates the potential for in-situ monitoring and flaw detection of the WAAM process in a computationally tractable manner.more » « less
-
The goal of this work is the flaw-free, industrial-scale production of biological additive manufacturing of tissue constructs (Bio-AM). In pursuit of this goal, the objectives of this work in the context of extrusion-based Bio-AM of bone tissue constructs are twofold: (1) detect flaw formation using data from in-situ infrared thermocouple sensors; and (2) prevent flaw formation through preemptive process control. In realizing the first objective, data signatures acquired from in-situ sensors were analyzed using several machine learning approaches to ascertain critical quality metrics, such as print regime, strand width, strand height, and strand fusion severity. These quality metrics are intended to capture the process state at the basic 1D strand-level to the 2D layer-level. For this purpose, machine learning models were trained to classify and predict flaw formation. These models predicted print quality features with accuracy nearing 90%. In connection with the second objective, the previously trained machine learning models were used to preempt flaw formation by changing the process parameters (print velocity) during deposition—a form of feedforward control. With the feedforward process control, strand width heterogeneity was statistically significantly reduced, reducing the strand width difference between strand halves to less than 50 µm. Using this integrated process monitoring, detection, and control approach, we demonstrate consistent, repeatable production of Bio-AM constructs.more » « less
-
Abstract In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.