skip to main content


Search for: All records

Creators/Authors contains: "Gal-Yam, Avishay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The impact of the Double Asteroid Redirection Test (DART) spacecraft with Dimorphos allows us to study asteroid collision physics, including momentum transfer, the ejecta properties, and the visibility of such events in the Solar system. We report observations of the DART impact in the ultraviolet (UV), visible light, and near-infrared (IR) wavelengths. The observations support the existence of at least two separate components of the ejecta: a fast and a slow component. The fast-ejecta component is composed of a gaseous phase, moving at about 1.6 km s−1 with a mass of ≲104 kg. The fast ejecta is detected in the UV and visible light, but not in the near-IR z-band observations. Fitting a simplified optical thickness model to these observations allows us to constrain some of the properties of the fast ejecta, including its scattering efficiency and the opacity of the gas. The slow ejecta component is moving at typical velocities of up to about 10 m s−1. It is composed of micrometer-size particles, that have a scattering efficiency, at the direction of the observer, of the order of 10−3 and a total mass of ∼106 kg. The larger particles in the slow ejecta, whose size is bound to be in the range between ∼1 mm and ∼1 m, likely have a scattering efficiency larger than that of the pre-impact Didymos system.

     
    more » « less
  2. ABSTRACT

    Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

     
    more » « less
  3. Abstract

    Multipeaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility. Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (−17.4 mag) and long (∼100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew’s spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak’s photospheric phase, before Hαresurfaces again during the nebular phase. The nebular lines ([Oi], [Caii], Mgi], Hα) exhibit a double-peaked structure that hints toward a clumpy or nonspherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than that of normal SESNe as well as requiring a very high56Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak and also powers the second peak of the light curve through interaction of the SN with the circumstellar medium.

     
    more » « less
  4. ABSTRACT

    Optical spectropolarimetry of the normal thermonuclear supernova (SN) 2019np from −14.5 to +14.5 d relative to B-band maximum detected an intrinsic continuum polarization (pcont) of 0.21 ± 0.09 per cent at the first epoch. Between days −11.5 and  +0.5, pcont remained ∼0 and by day +14.5 was again significant at 0.19 ± 0.10 per cent. Not considering the first epoch, the dominant axis of ${\rm Si\, {\small II}}$ λ6355 was roughly constant staying close the continuum until both rotated in opposite directions on day  +14.5. Detailed radiation-hydrodynamical simulations produce a very steep density slope in the outermost ejecta so that the low first-epoch pcont ≈ 0.2 per cent nevertheless suggests a separate structure with an axis ratio ∼2 in the outer carbon-rich (3.5–4) × 10−3 M⊙. Large-amplitude fluctuations in the polarization profiles and a flocculent appearance of the polar diagram for the ${\rm Ca\, {\small II}}$ near-infrared triplet (NIR3) may be related by a common origin. The temporal evolution of the polarization spectra agrees with an off-centre delayed detonation. The late-time increase in polarization and the possible change in position angle are also consistent with an aspherical 56Ni core. The pcont and the absorptions due to ${\rm Si\, {\small II}}$ λ6355 and ${\rm Ca\, {\small II}}$ NIR3 form in the same region of the extended photosphere, with an interplay between line occultation and thermalization producing p. Small-scale polarization features may be due to small-scale structures, but many could be related to atomic patterns of the quasi-continuum; they hardly have an equivalent in the total-flux spectra. We compare SN 2019np to other SNe and develop future objectives and strategies for SN Ia spectropolarimetry.

     
    more » « less
  5. Abstract

    SN 1987A was an unusual hydrogen-rich core-collapse supernova originating from a blue supergiant star. Similar blue supergiant explosions remain a small family of events, and are broadly characterized by their long rises to peak. The Zwicky Transient Facility Census of the Local Universe (CLU) experiment aims to construct a spectroscopically complete sample of transients occurring in galaxies from the CLU galaxy catalog. We identify 13 long-rising (>40 days) Type II supernovae from the volume-limited CLU experiment during a 3.5 yr period from 2018 June to 2021 December, approximately doubling the previously known number of these events. We present photometric and spectroscopic data of these 13 events, finding peakr-band absolute magnitudes ranging from −15.6 to −17.5 mag and the tentative detection of Baiilines in nine events. Using our CLU sample of events, we derive a long-rising Type II supernova rate of1.370.30+0.26×106Mpc−3yr−1, ≈1.4% of the total core-collapse supernova rate. This is the first volumetric rate of these events estimated from a large, systematic, volume-limited experiment.

     
    more » « less
  6. We present photometric and spectroscopic observations of the Type IIn supernova SN 2019zrk (also known as ZTF 20aacbyec). The SN shows a > 100 day precursor, with a slow rise, followed by a rapid rise to M  ≈ −19.2 in the r and g bands. The post-peak light-curve decline is well fit with an exponential decay with a timescale of ∼39 days, but it shows prominent undulations, with an amplitude of ∼1 mag. Both the light curve and spectra are dominated by an interaction with a dense circumstellar medium (CSM), probably from previous mass ejections. The spectra evolve from a scattering-dominated Type IIn spectrum to a spectrum with strong P-Cygni absorptions. The expansion velocity is high, ∼16 000 km s −1 , even in the last spectra. The last spectrum ∼110 days after the main eruption reveals no evidence for advanced nucleosynthesis. From analysis of the spectra and light curves, we estimate the mass-loss rate to be ∼4 × 10 −2   M ⊙ yr −1 for a CSM velocity of 100 km s −1 , and a CSM mass of 1  M ⊙ . We find strong similarities for both the precursor, general light curve, and spectral evolution with SN 2009ip and similar SNe, although SN 2019zrk displays a brighter peak magnitude. Different scenarios for the nature of the 09ip-class of SNe, based on pulsational pair instability eruptions, wave heating, and mergers, are discussed. 
    more » « less
  7. Abstract

    The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12Mis unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Caii]λλ7291, 7324/[Oi]λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [Oi] luminosity (≲1039erg s−1) and derived oxygen mass (≈0.01M) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12M. The ejecta properties (Mej≲ 1MandEkin∼ 1050erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.

     
    more » « less
  8. Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population. 
    more » « less
  9. Abstract Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star 1 , but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds 2 or binary interaction 3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star 4,5 . Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs.  6,7 ). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems. 
    more » « less
  10. Abstract

    We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z= 0.36) and high energy (Eγ,iso∼ 1053erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peakr-band magnitude ofMr= −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN ofMNi= 0.38 ± 0.01Mand a peak bolometric luminosity ofLbol∼ 1.3 × 1043erg s−1. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in therband and derive a photospheric expansion velocity ofvph= 11,300 ± 1600 km s−1at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta massMej= 1.0 ± 0.6Mand kinetic energyEKE=1.31.2+3.3×1051erg. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness andEγ,isofor their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.

     
    more » « less