skip to main content


Search for: All records

Creators/Authors contains: "Gall, Christine M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs.

    This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.

     
    more » « less
    Free, publicly-accessible full text available July 29, 2025
  2. Context contributes to multiple aspects of human episodic memory including segmentation and retrieval. The present studies tested if, in adult male and female mice, context influences the encoding of odors encountered in a single unsupervised sampling session of the type used for the routine acquisition of episodic memories. The three paradigms used differed in complexity (single vs. multiple odor cues) and period from sampling to testing. Results show that males consistently encode odors in a context-dependent manner: the mice discriminated novel from previously sampled cues when tested in the chamber of initial cue sampling but not in a distinct yet familiar chamber. This was independent of the interval between cue encounters or the latency from initial sampling to testing. In contrast, female mice acquired both single cues and the elements of multi-cue episodes, but recall of that information was dependent upon the surrounding context only when the cues were presented serially. These results extend the list of episodic memory features expressed by rodents and also introduce a striking and unexpected sex difference in context effects.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. Abstract

    Despite its evident importance to learning theory and models, the manner in which the lateral perforant path (LPP) transforms signals from entorhinal cortex to hippocampus is not well understood. The present studies measured synaptic responses in the dentate gyrus (DG) of adult mouse hippocampal slices during different patterns of LPP stimulation. Theta (5 Hz) stimulation produced a modest within‐train facilitation that was markedly enhanced at the level of DG output. Gamma (50 Hz) activation resulted in a singular pattern with initial synaptic facilitation being followed by a progressively greater depression. DG output was absent after only two pulses. Reducing release probability with low extracellular calcium instated frequency facilitation to gamma stimulation while long‐term potentiation, which increases release by LPP terminals, enhanced within‐train depression. Relatedly, per terminal concentrations of VGLUT2, a vesicular glutamate transporter associated with high release probability, were much greater in the LPP than in CA3–CA1 connections. Attempts to circumvent the potent gamma filter using a series of short (three‐pulse) 50 Hz trains spaced by 200 ms were only partially successful: composite responses were substantially reduced after the first burst, an effect opposite to that recorded in field CA1. The interaction between bursts was surprisingly persistent (>1.0 s). Low calcium improved throughput during theta/gamma activation but buffering of postsynaptic calcium did not. In all, presynaptic specializations relating to release probability produce an unusual but potent type of frequency filtering in the LPP. Patterned burst input engages a different type of filter with substrates that are also likely to be located presynaptically.image

    Key points

    The lateral perforant path (LPP)–dentate gyrus (DG) synapse operates as a low‐pass filter, where responses to a train of 50 Hz, γ frequency activation are greatly suppressed.

    Activation with brief bursts of γ frequency information engages a secondary filter that persists for prolonged periods (lasting seconds).

    Both forms of LPP frequency filtering are influenced by presynaptic, as opposed to postsynaptic, processes; this contrasts with other hippocampal synapses.

    LPP frequency filtering is modified by the unique presynaptic long‐term potentiation at this synapse.

    Computational simulations indicate that presynaptic factors associated with release probability and vesicle recycling may underlie the potent LPP–DG frequency filtering.

     
    more » « less