skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gangrade, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While the recent literature has seen a surge in the study of constrained bandit problems, all existing methods for these begin by assuming the feasibility of the underlying problem. We initiate the study of testing such feasibility assumptions, and in particular address the problem in the linear bandit setting, thus characterising the costs of feasibility testing for an unknown linear program using bandit feedback. Concretely, we test if 9x : Ax   0 for an unknown A 2 Rm×d, by playing a sequence of actions xt 2 Rd, and observing Axt + noise in response. By identifying the hypothesis as determining the sign of the value of a minimax game, we construct a novel test based on low-regret algorithms and a nonasymptotic law of iterated logarithms. We prove that this test is reliable, and adapts to the ‘signal level,’ T, of any instance, with mean sample costs scaling as O(d2/T2). We complement this by a minimax lower bound of (d/T2) for sample costs of reliable tests, dominating prior asymptotic lower bounds by capturing the dependence on d, and thus elucidating a basic insight missing in the extant literature on such problems. 
    more » « less
    Free, publicly-accessible full text available July 21, 2025
  2. Free, publicly-accessible full text available May 31, 2025
  3. null (Ed.)
    We present novel information-theoretic limits on detecting sparse changes in Isingmodels, a problem that arises in many applications where network changes can occur due to some external stimuli. We show that the sample complexity for detecting sparse changes, in a minimax sense, is no better than learning the entire model even in settings with local sparsity. This is a surprising fact in light of prior work rooted in sparse recovery methods, which suggest that sample complexity in this context scales only with the number of network changes. To shed light on when change detection is easier than structured learning, we consider testing of edge deletion in forest-structured graphs, and high-temperature ferromagnets as case studies. We show for these that testing of small changes is similarly hard, but testing of large changes is well-separated from structure learning. These results imply that testing of graphical models may not be amenable to concepts such as restricted strong convexity leveraged for sparsity pattern recovery, and algorithm development instead should be directed towards detection of large changes. 
    more » « less