Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape.L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs–protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.more » « less
-
This paper builds a bridge between two areas in optimization and machine learning by establishing a general connection between Wasserstein distributional robustness and variation regularization. It helps to demystify the empirical success of Wasserstein distributionally robust optimization and devise new regularization schemes for machine learning.more » « less
-
Abstract Carbon flux metasomatism in the subduction environment is an important process, but it remains poorly understood. The paucity of exposed lower crust and upper mantle rocks in continental arcs renders xenoliths a major target for studying the slab-derived carbon cycle. This study of the carbonate phases in volcanic rocks from three drill cores in Ulleung Island, South Korea, sheds light on the interaction of carbon flux in the upper mantle and lower crust in a back-arc setting. The volcanic rocks from Ulleung Island range in composition from trachybasalt to trachyte and contain abundant euhedral pseudomorphic carbonate grains, ulvöspinel-hosted and biotite-hosted carbonate-silicate melt inclusions, and irregular carbonate globules. Integrated petrographic and geochemical studies of a variety of phenocrysts, carbonate phases, and carbonate-silicate inclusions in biotite and ulvöspinel indicate that recharging of carbon flux affected magma evolution. Carbon and oxygen isotopes of the pseudomorphic carbonate grains overlap with mantle values, indicating a carbonatite-like origin of the carbonate phases. The (MgO, FeO, CaO)-rich silicates in ulvöspinel-hosted silicate inclusions and pseudomorphic carbonate grains likely represent a primary melt, which formed from the partial melting of carbonated eclogite of the subducted slab within the mantle wedge beneath Ulleung Island. A petrogenetic model is proposed to illustrate that the crystal mush in the magma chamber was intruded by carbonate-rich liquids and caused alteration of cumulate crystals to generate the euhedral pseudomorphic carbonate grains. The extrusive magma captured those pseudomorphic grains and erupted to form the trachybasalt-trachyte units. The observed carbonate phases and their geochemical characteristics indicate that carbon flux metasomatism played a fundamental role in this back-arc magmatism.more » « less