Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over-the-air federated learning (OTA-FL) is a communication effective approach for achieving distributed learning tasks. In this paper, we aim to enhance OTA-FL by seamlessly combining sensing into the communication-computation integrated system. Our research reveals that the wireless waveform used to convey OTA-FL parameters possesses inherent properties that make it well-suited for sensing, thanks to its remarkable auto- correlation characteristics. By leveraging the OTA-FL learning statistics, i.e., means and variances of local gradients in each training round, the sensing results can be embedded therein without the need for additional time or frequency resources. Finally, by considering the imperfections of learning statistics that are neglected in the prior works, we end up with an optimized the transceiver design to maximize the OTA-FL performance. Simulations validate that the proposed method not only achieves outstanding sensing performance but also significantly lowers the learning error bound.more » « less
-
Over-the-air federated learning (OTA-FL) is a communication-effective approach for achieving distributed learning tasks. In this paper, we aim to enhance OTA-FL by seamlessly combining sensing into the communication-computation integrated system. Our research reveals that the wireless waveform used to convey OTA-FL parameters possesses inherent properties that make it well-suited for sensing, thanks to its remarkable auto-correlation characteristics. By leveraging the OTA-FL learning statistics, i.e., means and variances of local gradients in each training round, the sensing results can be embedded therein without the need for additional time or frequency resources. Finally, by considering the imperfections of learning statistics that are neglected in the prior works, we end up with an optimized the transceiver design to maximize the OTA-FL performance. Simulations validate that the proposed method not only achieves outstanding sensing performance but also significantly lowers the learning error bound.more » « less
-
Meta-learning owns unique effectiveness and swiftness in tackling emerging tasks with limited data. Its broad applicability is revealed by viewing it as a bi-level optimization problem. The resultant algorithmic viewpoint however, faces scalability issues when the inner-level optimization relies on gradient-based iterations. Implicit differentiation has been considered to alleviate this challenge, but it is restricted to an isotropic Gaussian prior, and only favors deterministic meta-learning approaches. This work markedly mitigates the scalability bottleneck by cross-fertilizing the benefits of implicit differentiation to probabilistic Bayesian meta-learning. The novel implicit Bayesian meta-learning (iBaML) method not only broadens the scope of learnable priors, but also quantifies the associated uncertainty. Furthermore, the ultimate complexity is well controlled regardless of the inner-level optimization trajectory. Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one. Extensive numerical tests are also carried out to empirically validate the performance of the proposed method.more » « less
-
Meta-learning owns unique effectiveness and swiftness in tackling emerging tasks with limited data. Its broad applicability is revealed by viewing it as a bi-level optimization problem. The resultant algorithmic viewpoint however, faces scalability issues when the inner-level optimization relies on gradient-based iterations. Implicit differentiation has been considered to alleviate this challenge, but it is restricted to an isotropic Gaussian prior, and only favors deterministic meta-learning approaches. This work markedly mitigates the scalability bottleneck by cross-fertilizing the benefits of implicit differentiation to probabilistic Bayesian meta-learning. The novel implicit Bayesian meta-learning (iBaML) method not only broadens the scope of learnable priors, but also quantifies the associated uncertainty. Furthermore, the ultimate complexity is well controlled regardless of the inner-level optimization trajectory. Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one. Extensive numerical tests are also carried out to empirically validate the performance of the proposed method.more » « less