skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia, Miriam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The cycling of metals between interstellar gas and dust is a critical aspect of the baryon cycle of galaxies, yet our understanding of this process is limited. This study focuses on understanding dust depletion effects in the low-metallicity regime (<20%Z) typical of cosmic noon. Using medium-resolution UV spectroscopy from the Cosmic Origins Spectrograph on board the Hubble Space Telescope, gas-phase abundances and depletions of iron and sulfur were derived toward 18 sight lines in local dwarf galaxies IC 1613 and Sextans A. The results show that the depletion of Fe and S is consistent with that found in the Milky Way (MW), LMC, and SMC. The depletion level of Fe increases with gas column density, indicating dust growth in the interstellar medium. The level of Fe depletion decreases with decreasing metallicity, resulting in the fraction of iron in gas ranging from 3% in the MW to 9% in IC 1613 and ∼19% in Sextans A. The dust-to-gas and dust-to-metal ratios (D/G,D/M) for these dwarf galaxies were estimated based on the MW relations between the depletion of Fe and other elements. The study finds thatD/Gdecreases only slightly sublinearly with metallicity, withD/Mdecreasing from 0.41 ± 0.05 in the MW to 0.11 ± 0.11 at 0.10Z(at logN(H) = 21 cm−2). The trend ofD/Gversus metallicity using depletion in local systems is similar to that inferred in Damped Lyαsystems from abundance ratios but lies higher than the trend inferred from far-IR measurements in nearby galaxies. 
    more » « less
  2. Abstract Specifically selected to leverage the unique ultraviolet capabilities of the Hubble Space Telescope, the Hubble Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) is a Director’s Discretionary program of approximately 1000 orbits—the largest ever executed—that produced a UV spectroscopic library of O and B stars in nearby low-metallicity galaxies and accreting low-mass stars in the Milky Way. Observations from ULLYSES combined with archival spectra uniformly sample the fundamental astrophysical parameter space for each mass regime, including spectral type, luminosity class, and metallicity for massive stars, and the mass, age, and disk accretion rate for low-mass stars. The ULLYSES spectral library of massive stars will be critical to characterize how massive stars evolve at different metallicities; to advance our understanding of the production of ionizing photons, and thus of galaxy evolution and the re-ionization of the Universe; and to provide the templates necessary for the synthesis of integrated stellar populations. The massive-star spectra are also transforming our understanding of the interstellar and circumgalactic media of low-metallicity galaxies. On the low-mass end, UV spectra of T Tauri stars contain a plethora of diagnostics of accretion, winds, and the warm disk surface. These diagnostics are crucial for evaluating disk evolution and provide important input to assess atmospheric escape of planets and to interpret powerful probes of disk chemistry, as observed with the Atacama Large Millimeter Array and the James Webb Space Telescope. In this paper, we motivate the design of the program, describe the observing strategy and target selection, and present initial results. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  3. Dennehy, John J. (Ed.)
    ABSTRACT We present the complete chloroplast genome sequence of an endophytic Ostreobium sp. isolated from a 19th-century coralline red algal specimen from St. Croix, U.S. Virgin Islands. The chloroplast genome is 84,848 bp in length, contains 114 genes, and has a high level of gene synteny to other Ostreobiaceae. 
    more » « less