skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: METAL-Z: Measuring Dust Depletion in Low-metallicity Dwarf Galaxies
Abstract The cycling of metals between interstellar gas and dust is a critical aspect of the baryon cycle of galaxies, yet our understanding of this process is limited. This study focuses on understanding dust depletion effects in the low-metallicity regime (<20%Z) typical of cosmic noon. Using medium-resolution UV spectroscopy from the Cosmic Origins Spectrograph on board the Hubble Space Telescope, gas-phase abundances and depletions of iron and sulfur were derived toward 18 sight lines in local dwarf galaxies IC 1613 and Sextans A. The results show that the depletion of Fe and S is consistent with that found in the Milky Way (MW), LMC, and SMC. The depletion level of Fe increases with gas column density, indicating dust growth in the interstellar medium. The level of Fe depletion decreases with decreasing metallicity, resulting in the fraction of iron in gas ranging from 3% in the MW to 9% in IC 1613 and ∼19% in Sextans A. The dust-to-gas and dust-to-metal ratios (D/G,D/M) for these dwarf galaxies were estimated based on the MW relations between the depletion of Fe and other elements. The study finds thatD/Gdecreases only slightly sublinearly with metallicity, withD/Mdecreasing from 0.41 ± 0.05 in the MW to 0.11 ± 0.11 at 0.10Z(at logN(H) = 21 cm−2). The trend ofD/Gversus metallicity using depletion in local systems is similar to that inferred in Damped Lyαsystems from abundance ratios but lies higher than the trend inferred from far-IR measurements in nearby galaxies.  more » « less
Award ID(s):
2044303
PAR ID:
10516701
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
966
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe, either by using FIR dust emission as a tracer of the ISM or by using spectroscopy of damped Ly α systems to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), Large Magellanic Cloud (LMC) ( Z = 0.5 Z ⊙ ), and Small Magellanic Cloud (SMC) ( Z = 0.2 Z ⊙ ). The relations between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N (H) > 21 cm −2 , the depletion of metallicity tracers (S, Zn) exceeds −0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6), compensating for the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are respective factors of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen. 
    more » « less
  2. Abstract With a luminosity similar to that of Milky Way dwarf spheroidal systems like Sextans, but a spatial extent similar to that of ultra-diffuse galaxies, Andromeda (And) XIX is an unusual satellite of M31. To investigate the origin of this galaxy, we measure chemical abundances for And XIX derived from medium-resolution (R∼ 6000) spectra from the Deep Extragalactic Imaging Multi-Object Spectrograph on the Keck II telescope. We coadd 79 red giant branch stars, grouped by photometric metallicity, in order to obtain a sufficiently high signal-to-noise ratio to measure 20 [Fe/H] and [α/Fe] abundances via spectral synthesis. The latter are the first such measurements for And XIX. The mean metallicity we derive for And XIX places it ∼2σhigher than the present-day stellar mass–metallicity relation for Local Group dwarf galaxies, potentially indicating it has experienced tidal stripping. A loss of gas and associated quenching during such a process, which prevents the extended star formation necessary to produce shallow [α/Fe]–[Fe/H] gradients in massive systems, is also consistent with the steeply decreasing [α/Fe]–[Fe/H] trend we observe. In combination with the diffuse structure and disturbed kinematic properties of And XIX, this suggests tidal interactions, rather than galaxy mergers, are strong contenders for its formation. 
    more » « less
  3. Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10Malong with two quiescent galaxies atM*∼ 108.8Mobserved with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10Mis primarily driven by starvation. 
    more » « less
  4. ABSTRACT Observations indicate dust populations vary between galaxies and within them, suggesting a complex life cycle and evolutionary history. Here we investigate the evolution of galactic dust populations across cosmic time using a suite of cosmological zoom-in simulations from the Feedback in Realistic Environments project, spanning $$M_{\rm vir}=10^{9-12}{M}_{\odot };\, M_{*}=10^{6-11}\, {M}_{\odot }$$. Our simulations incorporate a dust evolution model that accounts for the dominant sources of dust production, growth, and destruction and follows the evolution of specific dust species. All galactic dust populations in our suite exhibit similar evolutionary histories, with gas–dust accretion being the dominant producer of dust mass for all but the most metal-poor galaxies. Similar to previous works, we find the onset of efficient gas–dust accretion occurs above a ‘critical’ metallicity threshold (Zcrit). Due to this threshold, our simulations reproduce observed trends between galactic D/Z and metallicity and element depletion trends in the interstellar medium. However, we find Zcrit varies between dust species due to differences in key element abundances, dust physical properties, and life cycle processes resulting in $$Z_{\rm crit}\sim 0.05{\rm Z}_{\odot },\, 0.2{\rm Z}_{\odot },\, 0.5{\rm Z}_{\odot }$$ for metallic iron, silicates, and carbonaceous dust, respectively. These variations could explain the lack of small carbonaceous grains observed in the Magellanic Clouds. We also find a delay between the onset of gas–dust accretion and when a dust population reaches equilibrium, which we call the equilibrium time-scale (τequil). The relation between τequil and the metal enrichment time-scale of a galaxy, determined by its recent evolutionary history, can contribute to the scatter in the observed relation between galactic D/Z and metallicity. 
    more » « less
  5. Abstract We present the Local GroupL-Band Survey, a Karl G. Jansky Very Large Array (VLA) survey producing the highest-quality 21 cm and 1–2 GHz radio continuum images to date, for the six VLA-accessible, star-forming, Local Group galaxies. Leveraging the VLA’s spectral multiplexing power, we simultaneously survey the 21 cm line at high 0.4 km s−1velocity resolution, the 1–2 GHz polarized continuum, and four OH lines. For the massive spiral M31, the dwarf spiral M33, and the dwarf irregular galaxies NGC 6822, IC 10, IC 1613, and the Wolf–Lundmark–Melotte Galaxy, we use all four VLA configurations and the Green Bank Telescope to reach angular resolutions of <5″ (10–20 pc) for the 21 cm line with <1020cm−2column density sensitivity, and even sharper views (<2″; 5–10 pc) of the continuum. Targeting these nearby galaxies (D ≲ 1 Mpc) reveals a sharp, resolved view of the atomic gas, including 21 cm absorption, and continuum emission from supernova remnants and Hiiregions. These data sets can be used to test theories of the abundance and formation of cold clouds, the driving and dissipation of interstellar turbulence, and the impact of feedback from massive stars and supernovae. Here, we describe the survey design and execution, scientific motivation, data processing, and quality assurance. We provide a first look at and publicly release the wide-field 21 cm Hidata products for M31, M33, and four dwarf irregular targets in the survey, which represent some of the highest-physical-resolution 21 cm observations of any external galaxies beyond the LMC and SMC. 
    more » « less