skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In June 2020, the tropical Atlantic and the Caribbean Basin were affected by a series of African dust outbreaks unprecedented in size and intensity. These events, informally named “Godzilla”, coincided with CALIMA, a large field campaign, offering a rare opportunity to assess the impact of African dust on air quality in the Greater Caribbean Basin. Network measurements of respirable particles (i.e., PM10and PM2.5) showed that dust significantly degraded regional air quality and increased the risk to public health in the Caribbean, the southern United States, northern South America, and Central America. CALIMA examined the meteorological context of Godzilla dust events over North Africa and how these conditions might relate to the greatly increased dust emissions and enhanced transport to the Americas. Godzilla was linked to strong pressure anomalies over West Africa, resulting in a large-scale geostrophic wind anomaly at 700 hPa over North Africa. We used surface-based and columnar measurements to test the performance of two frequently used aerosol forecast models: the NASA GEOS and WRF-Chem models. The models showed some skills, but differed substantially between their forecasts, suggesting large uncertainties in these forecasts that are critical for issuing early warnings of health-threatening dust events. Our results demonstrate the value of an integrated approach in characterizing the spatial and temporal variability of African dust transport and assessing its impact on regional air quality. Future studies are needed to improve models and to track the long-term changes in dust transport from Africa under a changing climate. 
    more » « less
  2. Abstract Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a “middle of the road” scenario (SSP2‐4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26–43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present‐day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from −20 to −191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming. 
    more » « less
  3. We report an improved measurement of the valence u and d quark distributions from the forward-backward asymmetry in the Drell-Yan process using 8.6 fb 1 of data collected with the D0 detector in p p ¯ collisions at s = 1.96 . This analysis provides the values of new structure parameters that are directly related to the valence up and down quark distributions in the proton. In other experimental results measuring the quark content of the proton, d quark contributions are mixed with those from other quark flavors. In this measurement, the u and d quark contributions are separately extracted by applying a factorization of the QCD and electroweak portions of the forward-backward asymmetry. Published by the American Physical Society2024 
    more » « less
  4. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy. 
    more » « less
  5. Abstract During LHC Run 2 (2015–2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1 $$\times $$ × 10 $$^{34}$$ 34  cm $$^{-2}$$ - 2 s $$^{-1}$$ - 1 , which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $$\tau $$ τ -leptons, muons and the missing transverse energy. It allowed to significantly improve the background event rejection and signal event acceptance, in particular for Higgs and B -physics processes. 
    more » « less
  6. A bstract The fragmentation properties of jets containing b -hadrons are studied using charged B mesons in 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The B mesons are reconstructed using the decay of B ± into J/ψK ± , with the J/ψ decaying into a pair of muons. Jets are reconstructed using the anti- k t algorithm with radius parameter R = 0 . 4. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed B hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets. 
    more » « less
  7. Abstract Several improvements to the ATLAS triggers used to identify jets containing b -hadrons ( b -jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b -jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b -jet identification efficiency compared to the performance in Run 1 (2011–2012). The efficiency to identify b -jets in the trigger, and the conditional efficiency for b -jets that satisfy offline b -tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b -tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b -jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b -hadron decays by selecting events with geometrically overlapping muons and jets. 
    more » « less
  8. A bstract The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and b -tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb − 1 . The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson Z ′ or a pseudoscalar singlet a and which both provide a dark matter candidate χ . In the case of the two-Higgs-doublet model with an additional vector boson Z ′, the observed limits extend up to a Z ′ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar a is excluded for masses of the a up to 520 GeV and 240 GeV for tan β = 1 and tan β = 10 respectively. Limits on the visible cross-sections are set and range from to 0.05 fb to 3.26 fb, depending on the missing transverse momentum and b -quark jet multiplicity requirements. 
    more » « less