skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gardner, W. Payton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The data provided here accompany the publication "Drought Characterization with GPS: Insights into Groundwater and Reservoir Storage in California" [Young et al., (2024)] which is currently under review with Water Resources Research. (as of 28 May 2024)Please refer to the manuscript and its supplemental materials for full details. (A link will be appended following publication)File formatting information is listed below, followed by a sub-section of the text describing the Geodetic Drought Index Calculation. The longitude, latitude, and label for grid points are provided in the file "loading_grid_lon_lat".Time series for each Geodetic Drought Index (GDI) time scale are provided within "GDI_time_series.zip".The included time scales are for 00- (daily), 1-, 3-, 6-, 12- 18- 24-, 36-, and 48-month GDI solutions.Files are formatted following...Title: "grid point label L****"_"time scale"_monthFile Format: ["decimal date" "GDI value"]Gridded, epoch-by-epoch, solutions for each time scale are provided within "GDI_grids.zip".Files are formatted following...Title: GDI_"decimal date"_"time scale"_monthFile Format: ["longitude" "latitude" "GDI value" "grid point label L****"]2.2 GEODETIC DROUGHT INDEX CALCULATION We develop the GDI following Vicente-Serrano et al. (2010) and Tang et al. (2023), such that the GDI mimics the derivation of the SPEI, and utilize the log-logistic distribution (further details below). While we apply hydrologic load estimates derived from GPS displacements as the input for this GDI (Figure 1a-d), we note that alternate geodetic drought indices could be derived using other types of geodetic observations, such as InSAR, gravity, strain, or a combination thereof. Therefore, the GDI is a generalizable drought index framework. A key benefit of the SPEI is that it is a multi-scale index, allowing the identification of droughts which occur across different time scales. For example, flash droughts (Otkin et al., 2018), which may develop over the period of a few weeks, and persistent droughts (>18 months), may not be observed or fully quantified in a uni-scale drought index framework. However, by adopting a multi-scale approach these signals can be better identified (Vicente-Serrano et al., 2010). Similarly, in the case of this GPS-based GDI, hydrologic drought signals are expected to develop at time scales that are both characteristic to the drought, as well as the source of the load variation (i.e., groundwater versus surface water and their respective drainage basin/aquifer characteristics). Thus, to test a range of time scales, the TWS time series are summarized with a retrospective rolling average window of D (daily with no averaging), 1, 3, 6, 12, 18, 24, 36, and 48-months width (where one month equals 30.44 days). From these time-scale averaged time series, representative compilation window load distributions are identified for each epoch. The compilation window distributions include all dates that range ±15 days from the epoch in question per year. This allows a characterization of the estimated loads for each day relative to all past/future loads near that day, in order to bolster the sample size and provide more robust parametric estimates [similar to Ford et al., (2016)]; this is a key difference between our GDI derivation and that presented by Tang et al. (2023). Figure 1d illustrates the representative distribution for 01 December of each year at the grid cell co-located with GPS station P349 for the daily TWS solution. Here all epochs between between 16 November and 16 December of each year (red dots), are compiled to form the distribution presented in Figure 1e. This approach allows inter-annual variability in the phase and amplitude of the signal to be retained (which is largely driven by variation in the hydrologic cycle), while removing the primary annual and semi-annual signals. Solutions converge for compilation windows >±5 days, and show a minor increase in scatter of the GDI time series for windows of ±3-4 days (below which instability becomes more prevalent). To ensure robust characterization of drought characteristics, we opt for an extended ±15-day compilation window. While Tang et al. (2023) found the log-logistic distribution to be unstable and opted for a normal distribution, we find that, by using the extended compiled distribution, the solutions are stable with negligible differences compared to the use of a normal distribution. Thus, to remain aligned with the SPEI solution, we retain the three-parameter log-logistic distribution to characterize the anomalies. Probability weighted moments for the log-logistic distribution are calculated following Singh et al., (1993) and Vicente-Serrano et al., (2010). The individual moments are calculated following Equation 3. These are then used to calculate the L-moments for shape (), scale (), and location () of the three-parameter log-logistic distribution (Equations 4 – 6). The probability density function (PDF) and the cumulative distribution function (CDF) are then calculated following Equations 7 and 8, respectively. The inverse Gaussian function is used to transform the CDF from estimates of the parametric sample quantiles to standard normal index values that represent the magnitude of the standardized anomaly. Here, positive/negative values represent greater/lower than normal hydrologic storage. Thus, an index value of -1 indicates that the estimated load is approximately one standard deviation dryer than the expected average load on that epoch. *Equations can be found in the main text. 
    more » « less
  2. Vaselli, Orlando (Ed.)
    We investigate deformation mechanics of fracture networks in unsaturated fractured rocks from subsurface conventional detonation using dynamic noble gas measurements and changes in air permeability. We dynamically measured the noble gas isotopic composition and helium exhalation of downhole gas before and after a large subsurface conventional detonation. These noble gas measurements were combined with measurements of the subsurface permeability field from 64 discrete sampling intervals before and after the detonation and subsurface mapping of fractures in borehole walls before well completion. We saw no observable increase in radiogenic noble gas release from either an isotopic composition or a helium exhalation point of view. Large increases in permeability were observed in 13 of 64 discrete sampling intervals. Of the sampling intervals which saw large increases in flow, only two locations did not have preexisting fractures mapped at the site. Given the lack of noble gas release and a clear increase in permeability, we infer that most of the strain accommodation of the fractured media occurred along previously existing fractures, rather than the creation of new fractures, even for a high strain rate event. These results have significant implications for how we conceptualize the deformation of rocks with fracture networks above the percolation threshold, with application to a variety of geologic and geological engineering problems. 
    more » « less
  3. Abstract Non‐uniqueness in groundwater model calibration is a primary source of uncertainty in groundwater flow and transport predictions. In this study, we investigate the ability of environmental tracer information to constrain groundwater model parameters. We utilize a pilot point calibration procedure conditioned to subsets of observed data including: liquid pressures, tritium (3H), chlorofluorocarbon‐12 (CFC‐12), and sulfur hexafluoride (SF6) concentrations; and groundwater apparent ages inferred from these environmental tracers, to quantify uncertainties in the heterogeneous permeability fields and infiltration rates of a steady‐state 2‐D synthetic aquifer and a transient 3‐D model of a field site located near Riverton, Wyoming (USA). To identify the relative data worth of each observation data type, the post‐calibration uncertainties of the optimal parameters for a given observation subset are compared to that from the full observation data set. Our results suggest that the calibration‐constrained permeability field uncertainties are largest when liquid pressures are used as the sole calibration data set. We find significant reduction in permeability uncertainty and increased predictive accuracy when the environmental tracer concentrations, rather than apparent groundwater ages, are used as calibration targets in the synthetic model. Calibration of the Riverton field site model using environmental tracer concentrations directly produces infiltration rate estimates with the lowest uncertainties, however; permeability field uncertainties remain similar between the environmental tracer concentration and apparent groundwater age calibration scenarios. This work provides insight on the data worth of environmental tracer information to calibrate groundwater models and highlights potential benefits of directly assimilating environmental tracer concentrations into model parameter estimation procedures. 
    more » « less
  4. Abstract Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS‐based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS‐observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer. 
    more » « less
  5. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences. We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures. 
    more » « less
  6. Abstract We installed a purpose‐built network of co‐located Global Navigation Satellite System (GNSS) stations and meteorological instrumentation to investigate water storage in a high‐mountain watershed along the Idaho‐Montana border. Twelve GNSS stations are distributed across the Selway‐Lochsa watersheds at approximately 30–40 km spacing, filling a critical observational gap between localized point measurements and regional geodetic and satellite data sets. The unique coupling of geodetic and hydrologic observations in this network enables direct comparison between co‐located GNSS measurements of the elastic response of the solid Earth and local changes in measured water storage. This network is specifically designed to address questions of hydrologic storage and movement at the mountain watershed scale. Here, we describe technical details of the network and its deployment; introduce new hydrologic, meteorologic, and geodetic data sets recorded by the network; process and analyze the source data (e.g., time series of daily three‐dimensional GNSS site positions, removal of non‐hydrologic signals); and characterize basic empirical relationships between water storage, water movement, and GNSS‐inferred surface displacement. The network shows preliminary evidence for spatial differences in displacement resulting from a range of snow loads across elevations, but longer and more complete data records are needed to support these initial findings. We also provide examples of additional scientific applications of this network, including estimations of snow depth and snow water equivalent from GNSS multipath reflectometry. Finally, we consider the challenges, limitations, and opportunities of deploying GNSS and weather stations at high elevations with heavy snowpack and offer ideas for technical improvements. 
    more » « less