- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Garland, Michael (5)
-
Aiken, Alex (3)
-
Bauer, Michael (3)
-
Kjolstad, Fredrik (3)
-
Yadav, Rohan (3)
-
Lee, Wonchan (2)
-
Ahmad, Khalid (1)
-
Broman, David (1)
-
Cecka, Cris (1)
-
Elibol, Melih (1)
-
Garg, Animesh (1)
-
Gopalakrishnan, Ganesh L. (1)
-
Hall, Mary (1)
-
Joseph, Vinu (1)
-
Lee-Patti, Taylor (1)
-
Muralidharan, Saurav (1)
-
Papadakis, Manolis (1)
-
Sundram, Shiv (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 30, 2026
-
Yadav, Rohan; Sundram, Shiv; Lee, Wonchan; Garland, Michael; Bauer, Michael; Aiken, Alex; Kjolstad, Fredrik (, ACM)Free, publicly-accessible full text available March 30, 2026
-
Ahmad, Khalid; Cecka, Cris; Garland, Michael; Hall, Mary (, ACM Transactions on Architecture and Code Optimization)An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTM is a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this article, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE’s SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.more » « less
-
Yadav, Rohan; Lee, Wonchan; Elibol, Melih; Papadakis, Manolis; Lee-Patti, Taylor; Garland, Michael; Aiken, Alex; Kjolstad, Fredrik; Bauer, Michael (, ACM)
-
Joseph, Vinu; Gopalakrishnan, Ganesh L.; Muralidharan, Saurav; Garland, Michael; Garg, Animesh (, IEEE Micro)
An official website of the United States government
