skip to main content

Search for: All records

Creators/Authors contains: "Garuba, Moses"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent technological advances provide the opportunities to bridge the physical world with cyber-space that leads to complex and multi-domain cyber physical systems (CPS) where physical systems are monitored and controlled using numerous smart sensors and cyber space to respond in real-time based on their operating environment. However, the rapid adoption of smart, adaptive and remotely accessible connected devices in CPS makes the cyberspace more complex and diverse as well as more vulnerable to multitude of cyber-attacks and adversaries. In this paper, we aim to design, develop and evaluate a distributed machine learning algorithm for adversarial resiliency where developed algorithm is expected to provide security in adversarial environment for critical mobile CPS.
  2. "Knowledge is power" is an old adage that has been found to be true in today's information age. Knowledge is derived from having access to information. The ability to gather information from large volumes of data has become an issue of relative importance. Big Data Analytics (BDA) is the term coined by researchers to describe the art of processing, storing and gathering large amounts of data for future examination. Data is being produced at an alarming rate. The rapid growth of the Internet, Internet of Things (IoT) and other technological advances are the main culprits behind this sustained growth. The data generated is a reflection of the environment it is produced out of, thus we can use the data we get out of systems to figure out the inner workings of that system. This has become an important feature in cybersecurity where the goal is to protect assets. Furthermore, the growing value of data has made big data a high value target. In this paper, we explore recent research works in cybersecurity in relation to big data. We highlight how big data is protected and how big data can also be used as a tool for cybersecurity. We summarize recentmore »works in the form of tables and have presented trends, open research challenges and problems. With this paper, readers can have a more thorough understanding of cybersecurity in the big data era, as well as research trends and open challenges in this active research area.« less
  3. Traffic congestion and accidents are increasing exponentially worldwide. More vehicles are sold every year which leads to more traffic fatalities and congestion. There have been several efforts worldwide for mobile Cyber Physical Systems (CPS) to address a range of problems including traffic congestion, accidents, unnecessary time spent in traffic jams, and overall infotainment by using onboard communicating and computing technologies. However, when we use peer-to-peer network-based communication for mobile CPS, malicious users/vehicles could mislead the mobile CPS by not reporting their true periodic status data to their neighbors on the road. In this paper, we study a data validation and correction approach for resiliency in mobile CPS that uses a diverse set of data for reducing false information. Numerical results obtained from Monte Carlo simulation are used to evaluate the proposed approach. Results show that the proposed approach minimizes the false data in the mobile CPS to enhance the resiliency.
  4. Already known as densely populated areas with land use including housing, transportation, sanitation, utilities and communication, nowadays, cities tend to grow even bigger. Genuine road-user's types are emerging with further technological developments to come. As cities population size escalates, and roads getting congested, government agencies such as Department of Transportation (DOT) through the National Highway Traffic Safety Administration (NHTSA) are in pressing need to perfect their management systems with new efficient technologies. The challenge is to anticipate on never before seen problems, in their effort to save lives and implement sustainable cost-effective management systems. To make things yet more complicated and a bit daunting, self-driving car will be authorized in a close future in crowded major cities where roads are to be shared among pedestrians, cyclists, cars, and trucks. Roads sizes and traffic signaling will need to be constantly adapted accordingly. Counting and classifying turning vehicles and pedestrians at an intersection is an exhausting task and despite traffic monitoring systems use, human interaction is heavily required for counting. Our approach to resolve traffic intersection turning-vehicles counting is less invasive, requires no road dig up or costly installation. Live or recorded videos from already installed camera all over the cities canmore »be used as well as any camera including cellphones. Our system is based on Neural Network and Deep Learning of object detection along computer vision technology and several methods and algorithms. Our approach will work on still images, recorded-videos, real-time live videos and will detect, classify, track and compute moving object velocity and direction using convolution neural network. Created based upon series of algorithms modeled after the human brain, our system uses NVIDIA Video cards with GPU, CUDA, OPENCV and mathematical vectors systems to perform.« less