skip to main content


Title: Data Validation and Correction for Resiliency in Mobile Cyber-Physical Systems
Traffic congestion and accidents are increasing exponentially worldwide. More vehicles are sold every year which leads to more traffic fatalities and congestion. There have been several efforts worldwide for mobile Cyber Physical Systems (CPS) to address a range of problems including traffic congestion, accidents, unnecessary time spent in traffic jams, and overall infotainment by using onboard communicating and computing technologies. However, when we use peer-to-peer network-based communication for mobile CPS, malicious users/vehicles could mislead the mobile CPS by not reporting their true periodic status data to their neighbors on the road. In this paper, we study a data validation and correction approach for resiliency in mobile CPS that uses a diverse set of data for reducing false information. Numerical results obtained from Monte Carlo simulation are used to evaluate the proposed approach. Results show that the proposed approach minimizes the false data in the mobile CPS to enhance the resiliency.  more » « less
Award ID(s):
1828811
NSF-PAR ID:
10094355
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Big cities are well-known for their traffic congestion and high density of vehicles such as cars, buses, trucks, and even a swarm of motorbikes that overwhelm city streets. Large-scale development projects have exacerbated urban conditions, making traffic congestion more severe. In this paper, we proposed a data-driven city traffic planning simulator. In particular, we make use of the city camera system for traffic analysis. It seeks to recognize the traffic vehicles and traffic flows, with reduced intervention from monitoring staff. Then, we develop a city traffic planning simulator upon the analyzed traffic data. The simulator is used to support metropolitan transportation planning. Our experimental findings address traffic planning challenges and the innovative technical solutions needed to solve them in big cities. 
    more » « less
  2. Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year from Nashville, TN to train a multi-layered deep neural network. The traffic dataset contains over 900 million data records. The network is thereafter used to classify the real-time data and identify anomalous operations. Compared with traditional approaches of using statistical or machine learning techniques, our model reaches an accuracy of 98.73 percent when identifying traffic congestion caused by football games. Our approach first encodes the traffic across a region as a scaled image. After that the image data from different timestamps is fused with event- and time-related data. Then a crossover operator is used as a data augmentation method to generate training datasets with more balanced classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We present the analysis of the training time and the inference time separately. 
    more » « less
  3. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon.

     
    more » « less
  4. Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone. 
    more » « less
  5. Self-driving technology companies and the research community are accelerating the pace of use of machine learning longitudinal motion planning (mMP) for autonomous vehicles (AVs). This paper reviews the current state of the art in mMP, with an exclusive focus on its impact on traffic congestion. The paper identifies the availability of congestion scenarios in current datasets, and summarizes the required features for training mMP. For learning methods, the major methods in both imitation learning and non-imitation learning are surveyed. The emerging technologies adopted by some leading AV companies, such as Tesla, Waymo, and Comma.ai, are also highlighted. It is found that: (i) the AV industry has been mostly focusing on the long tail problem related to safety and has overlooked the impact on traffic congestion, (ii) the current public self-driving datasets have not included enough congestion scenarios, and mostly lack the necessary input features/output labels to train mMP, and (iii) although the reinforcement learning approach can integrate congestion mitigation into the learning goal, the major mMP method adopted by industry is still behavior cloning, whose capability to learn a congestion-mitigating mMP remains to be seen. Based on the review, the study identifies the research gaps in current mMP development. Some suggestions for congestion mitigation for future mMP studies are proposed: (i) enrich data collection to facilitate the congestion learning, (ii) incorporate non-imitation learning methods to combine traffic efficiency into a safety-oriented technical route, and (iii) integrate domain knowledge from the traditional car-following theory to improve the string stability of mMP. 
    more » « less