skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gautam, Yogesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Prior research has validated Photoplethysmography (PPG) as a promising biomarker for assessing stress factors in construction workers, including physical fatigue, mental stress, and heat stress. However, the reliability of PPG as a stress biomarker in construction workers is hindered by motion artifacts (MA) - distortions in blood volume pulse measurements caused by sensor movement. This paper develops a deep convolutional autoencoder-based framework, trained to detect and reduce MA in MA-contaminated PPG signals. The framework's performance is evaluated using PPG signals acquired from individuals engaged in specific construction tasks. The results demonstrate the framework has effectiveness in both detecting and reducing MA in PPG signals with a detection accuracy of 93% and improvement in signal-to-noise ratio by over 88%. This research contributes to a more reliable and error-reduced usage of PPG signals for health monitoring in the construction industry. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  3. Construction workers often experience high levels of physical and mental stress due to the demanding nature of their work on construction sites. Real-time health monitoring can provide an effective means of detecting these stressors. Previous research in this field has demonstrated the potential of photoplethysmography (PPG), which represents cardiac activities, as a biomarker for assessing various stressors, including physical fatigue, mental stress, and heat stress. However, PPG acquisition during construction tasks is subject to several external noises, of which motion artifact is a major one. To address this, the study develops and examines an autoencoder network—a special type of artificial neural network—to remove PPG signals’ motion artifacts during construction tasks, thereby enhancing the accuracy of health assessments.Artifact-free PPG signals are acquired through subjects in a stationary position, which is used as the reference for training the autoencoder network. The network’s performance is examined with PPG signals acquired from the same subjects performing multiple construction tasks. The developed autoencoder network can increase the signal-to-noise ratio (SNR) by up to 33% for the corrupted signals acquired in a construction setting. This research contributes to the extensive and resilient use of PPG signals in health monitoring for construction workers. 
    more » « less
  4. Recent advancements in wearable physiological sensing and artificial intelligence have made some remarkable progress in workers’ health monitoring in construction sites. However, the scalable application is still challenging. One of the major complications for deployment has been the distribution shift observed in the physiological data obtained through sensors. This study develops a deep adversarial domain adaptation framework to adapt to out-of-distribution data(ODD) in the wearable physiological device based on photoplethysmography (PPG). The domain adaptation framework is developed and validated with reference to the heart rate predictor based on PPG. A heart rate predictor module comprising feature generating encoder and predictor isinitially trained with data from a given training domain. An unsupervised adversarial domain adaptation method is then implemented for the test domain. In the domain adaptation process, the encoder network is adapted to generate domain invariant features for the test domain using discriminator-based adversarial optimization. The results demonstrate that this approach can effectively accomplish domain adaptation, as evidenced by a 27.68% reduction in heart rate prediction error for the test domain. The proposed framework offers potential for scaled adaptation in the jobsite by addressing the ODD problem. 
    more » « less
  5. Exoskeletons, also known as wearable robots, are being studied as a potential solution to reduce the risk of work-related musculoskeletal disorders (WMSDs) in construction. The exoskeletons can help enhance workers’ postures and provide lift support, reducing the muscular demands on workers while executing construction tasks. Despite the potential of exoskeletons inreducing the risk of WMSDs, there is a lack of understanding about the potential effects ofexoskeletons on workers’ psychological states. This lack of knowledge raises concerns thatexoskeletons may lead to psychological risks, such as cognitive overload, among workers. Tobridge this gap, this study aims to assess the impact of back-support exoskeletons (BSE) onworkers’ cognitive load during material lifting tasks. To accomplish this, a physiologically basedcognitive load assessment framework was developed. This framework used wearable biosensorsto capture the physiological signals of workers and applied Autoencoder and Ensemble Learningtechniques to train a machine learning classifier based on the signals to estimate cognitive loadlevels of workers while wearing the exoskeleton. Results showed that using BSE increasedworkers’ cognitive load by 33% compared to not using it during material handling tasks. Thefindings can aid in the design and implementation of exoskeletons in the construction industry. 
    more » « less