The Gulf Stream, a major ocean current in the North Atlantic ocean is a key component in the global redistribution of heat and is important for marine ecosystems. Based on 27 years (1993–2019) of wind reanalysis and satellite altimetry measurements, we present observational evidence that the path of this freely meandering jet after its separation from the continental slope at Cape Hatteras, aligns with the region of maximum cyclonic vorticity of the wind stress field known as the positive vorticity pool. This synchronicity between the wind stress curl maximum region and the Gulf Stream path is observed at multiple time-scales ranging from months to decades, spanning a distance of 1500 km between 70 and 55W. The wind stress curl in the positive vorticity pool is estimated to drive persistent upward vertical velocities ranging from 5 to 17 cm day−1over its ~ 400,000 km2area; this upwelling may supply a steady source of deep nutrients to the Slope Sea region, and can explain as much as a quarter of estimated primary productivity there.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pan, J (Ed.)
Abstract Free, publicly-accessible full text available December 1, 2025 -
Abstract We present observational evidence of a significant increase in Salinity Maximum intrusions in the Northeast US Shelf waters in the years following 2000. This increase is subsequent to and influenced by a previously observed regime-shift in the annual formation rate for Gulf Stream Warm Core Rings, which are relatively more saline than the shelf waters. Specifically, mid-depth salinity maximum intrusions, a cross-shelf exchange process, has shown a quadrupling in frequency on the shelf after the year 2000. This increase in intrusion frequency can be linked to a similar increase in Warm Core Ring occupancy footprint along the offshore edge of the shelf-break which has greatly increased the abundance of warm salty water within the Slope Sea. The increased ring occupancy footprint along the shelf follows from the near doubling in annual Warm Core Ring formation rate from the Gulf Stream. The increased occurrence of intrusions is likely driven by a combination of a larger number of rings in the slope sea and the northward shift in the GS position which may lead to more interactions between rings and the shelf topography. These results have significant implications for interpreting temporal changes in the shelf ecosystem from the standpoint of both larval recruitment as well as habitability for various important commercial species.
-
Recent warming in the Northeast United States continental shelf ecosystem has raised several concerns about the impacts on the ecosystem and commercial fisheries. In 2014, researchers from the Commercial Fisheries Research Foundation and Woods Hole Oceanographic Institution founded the Shelf Research Fleet to involve fishers in monitoring the rapidly changing ocean environment and encourage sharing of ecological knowledge. The Shelf Research Fleet is a transdisciplinary, cooperative program that trains commercial fishers to collect oceanographic information by deploying conductivity, temperature, and depth (CTD) instruments while commercially fishing. A total of 806 CTD profiles have been collected by the Shelf Research Fleet through December 2022. Participating vessels can view the conductivity and temperature water column profiles they collect in real-time. These profiles help inform their fishing practices and give insights when unexpected species appear in their gear or if their catch composition changes from previous years. The data collected by the Shelf Research Fleet are shared with and processed by researchers from numerous partnering institutions. The Shelf Research Fleet data have been used by researchers to better understand oceanographic phenomena including marine heatwaves, shelf-break exchange processes, warm core rings, and salinity maximum intrusions onto the continental shelf. The scope of the Shelf Research Fleet has grown over time to include efforts to more directly link oceanographic results with biological observations to better understand how changing ocean conditions are affecting commercially important species. This article describes the approach, successes, challenges, and future directions of the Shelf Research Fleet and aims to outline a framework for a cost-effective research program that engages fishers in the collection of oceanographic data, strengthening partnerships between fishing industry members and the scientific community.more » « less
-
This dataset includes multiple fields: (i) files for monthly and annual fields for the max curl line and the zero curl line at 0.1 degree longitudinal resolutions; (ii) files for monthly and annual GS path obtained from Altimetry and originally processed by Andres (2016) at 0.1 degree longitudinal resolution. The maximum curl line (MCL) and the zero curl line (ZCL) calculations are briefly described here and are based on the original wind data (at 1.25 x 1.25 degree) provided by the Japanese reanalysis (JRA-55; Kobayashi et al., 2015) and available at https://zenodo.org/record/8200832 (Gifford et al. 2023). For details see Gifford, 2023.
The wind stress curl (WSC) fields used for the MCL and ZCL calculations extend from 80W to 45W and 30N to 45N at the 1.25 by 1.25-degree resolution. The MCL is defined as the maximum WSC values greater than zero within the domain per 1.25 degree longitude. As such, it is a function of longitude and is not a constant WSC value unlike the zero contour. High wind stress curl values that occurred near the coast were not included within this calculation. After MCL at the 1.25 resolution was obtained the line was smoothed with a gaussian smoothing and interpolated on to a 0.1 longitudinal resolution. The smoothed MCL lines at 0.1 degree resolution are provided in separate files for monthly and annual averages (2 files). Similarly, 2 other files (monthly and annual) are provided for the ZCL.
Like the MCL, the ZCL is a line derived from 1.25 degree longitude throughout the domain under the condition that it's the line of zero WSC. The ZCL is constant at 0 and does not vary spatially like the MCL. If there are more than one location of zero curl for a given longitude the first location south of the MCL is selected. Similar to the MCL, the ZCL was smoothed with a gaussian smoothing and interpolated on to a 0.1 longitudinal resolution.
The above files span the years from 1980 through 2019. So, the monthly files have 480 months starting January 1980, and the annual files have 40 years of data. The files are organized with each row being a new time step and each column being a different longitude. Therefore, the monthly MCL and ZCL files are each 480 x 351 for the 0.1 resolution data. Similarly, the annual files are 40 x 351 for the 0.1 degree resolution data.
Note that the monthly MCLs and ZCLs are obtained from the monthly wind-stress curl fields. The annual MCLs and ZCLs are obtained from the annual wind-stress curl fields.
Since the monthly curl fields preserves more atmospheric mesoscales than the annual curl fields, the 12-month average of the monthly MCLs and ZCLs will not match with the annual MCLs and ZCLs derived from the annual curl field. The annual MCLs and ZCLs provided here are obtained from the annual curl fields and representative metrics of the wind forcing on an annual time-scale.
Furthermore, the monthly Gulf Stream axis path (25 cm isoheight from Altimeter, reprocessed by Andres (2016) technique) from 1993 through 2019 have been made available here. A total of 324 monthly paths of the Gulf Stream are tabulated. In addition, the annual GS paths for these 27 years (1993-2019) of altimetry era have been put together for ease of use. The monthly Gulf Stream paths have been resampled and reprocessed for uniqueness at every 0.1 degree longitude from 75W to 50W and smoothed with a 100 km (10 point) running average via matlab. The uniqueness has been achieved by using Consolidator algorithm (D’Errico, 2023).
Each monthly or annual GS path has 251 points between 75W to 50W at 0.1 degree resolution.
Please contact igifford@earth.miami.edu for any queries. {"references": ["Andres, M., 2016. On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras. Geophysical Research Letters, 43(18), 9836-9842.", "D'Errico, J., 2023. Consolidator (https://www.mathworks.com/matlabcentral/fileexchange/ 8354-consolidator), MATLAB Central File Exchange. Retrieved June 17, 2023.", "Gifford, Ian. H., 2023. The Synchronicity of the Gulf Stream Free Jet and the Wind Induced Cyclonic Vorticity Pool. MS Thesis, University of Massachusetts Dartmouth. 75pp.", "Gifford, Ian, H., Avijit Gangopadhyay, Magdalena Andres, Glen Gawarkiewicz, Hilde Oliver, Adrienne Silver, 2023. Wind Stress, Wind Stress Curl, and Upwelling Velocities in the Northwest Atlantic (80-45W, 30-45N) during 1980-2019, https://zenodo.org/record/8200832.", "Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\u202fJournal of the Meteorological Society of Japan. Ser. II,\u202f93(1), pp.5-48. Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\u202fJournal of the Meteorological Society of Japan. Ser. II,\u202f93(1), pp.5-48."]} -
This dataset contains three netcdf files that pertain to monthly, seasonal, and annual fields of surface wind stress, wind stress curl, and curl-derived upwelling velocities over the Northwest Atlantic (80-45W, 30-45N) covering a forty year period from 1980 to 2019. Six-hourly surface (10 m) wind speed components from the Japanese 55-year reanalysis (JRA-55; Kobayashi et al., 2015) were processed from 1980 to 2019 over a larger North Atlantic domain of 100W to 10E and 10N to 80N. Wind stress was computed using a modified step-wise formulation, originally based on (Gill, 1982) and a non-linear drag coefficient (Large and Pond, 1981), and later modified for low speeds (Trenberth et al., 1989). See Gifford (2023) for more details.
After the six-hourly zonal and meridional wind stresses were calculated, the zonal change in meridional stress (curlx) and the negative meridional change in zonal stress (curly) were found using NumPy’s gradient function in Python (Harris et al., 2020) over the larger North Atlantic domain (100W-10E, 10-80N). The curl (curlx + curly) over the study domain (80-45W, 10-80N) is then extracted, which maintain a constant order of computational accuracy in the interior and along the boundaries for the smaller domain in a centered-difference gradient calculation.
The monthly averages of the 6-hour daily stresses and curls were then computed using the command line suite climate data operators (CDO, Schulzweida, 2022) monmean function. The seasonal (3-month average) and annual averages (12-month average) were calculated in Python using the monthly fields with NumPy (NumPy, Harris et al., 2020).
Corresponding upwelling velocities at different time-scales were obtained from the respective curl fields and zonal wind stress by using the Ekman pumping equation of the study by Risien and Chelton (2008; page 2393). Please see Gifford (2023) for more details.
The files each contain nine variables that include longitude, latitude, time, zonal wind stress, meridional wind stress, zonal change in meridional wind stress (curlx), the negative meridional change in zonal wind stress (curly), total curl, and upwelling. Units of time begin in 1980 and are months, seasons (JFM etc.), and years to 2019. The longitude variable extends from 80W to 45W and latitude is 30N to 45N with uniform 1.25 degree resolution.
Units of stress are in Pascals, units of curl are in Pascals per meter, and upwelling velocity is described by centimeters per day. The spatial grid is a 29 x 13 longitude x latitude array.
Filenames:
monthly_windstress_wsc_upwelling.nc: 480 time steps from 80W to 45W and 30N to 45N.
seasonal_windstress_wsc_upwelling.nc: 160 time steps from 80W to 45W and 30N to 45N.
annual_windstress_wsc_upwelling.nc: 40 time steps from 80W to 45W and 30N to 45N.
Please contact igifford@earth.miami.edu for any queries. {"references": ["Gifford, I.H., 2023. The Synchronicity of the Gulf Stream Free Jet and the Wind Induced Cyclonic Vorticity Pool. MS Thesis, University of Massachusetts Dartmouth. 75pp.", "Gill, A. E. (1982). Atmosphere-ocean dynamics (Vol. 30). Academic Press.", "Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357\u2013362 (2020). DOI: 10.1038/s41586-020-2649-2.", "Japan Meteorological Agency/Japan (2013), JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, https://doi.org/10.5065/D6HH6H41, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated monthly.)", "Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\u202fJournal of the Meteorological Society of Japan. Ser. II,\u202f93(1), pp.5-48.", "Large, W.G. and Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds.\u202fJournal of physical oceanography,\u202f11(3), pp.324-336.", "Risien, C.M. and Chelton, D.B., 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data.\u202fJournal of Physical Oceanography,\u202f38(11), pp.2379-2413.", "Schulzweida, Uwe. (2022). CDO User Guide (2.1.0). Zenodo. https://doi.org/10.5281/zenodo.7112925.", "Trenberth, K.E., Large, W.G. and Olson, J.G., 1989. The effective drag coefficient for evaluating wind stress over the oceans.\u202fJournal of Climate,\u202f2(12), pp.1507-1516."]} -
Shoreward intrusions of anomalously salty water along the continental shelf of the Middle Atlantic Bight are often observed in spring and summer. Exchange of heat, nutrients, and carbon across the salinity-intrusion front has a significant impact on the marine ecosystem and fisheries. In this article, we developed a method of using an autonomous underwater vehicle (AUV) to detect a salinity-intrusion front and track the front’s movement. Autonomous front detection is based on the different vertical structures of salinity in the two distinct water types: the vertical difference of salinity is large in the intruding saltier water because of the salinity “tongue” at mid-depth, but is small in the nearshore fresher water due to absence of the salinity anomaly. Every time the AUV crosses and detects the front, the vehicle makes a turn at an oblique angle to cross the front, thus zigzagging through the front to map the frontal zone. The AUV’s zigzags sweep back and forth to track the front as it moves over time. From June 25 to 30, 2021, a Tethys-class long-range AUV mapped and tracked a salinity-intrusion front on the southern New England shelf. The frontal tracking revealed the salinity intrusion’s 3-D structure and temporal evolution with unprecedented detail.more » « less
-
null (Ed.)Abstract As the Gulf Stream separates from the coast, it sheds both Warm and Cold Core Rings between $$75^\circ$$ 75 ∘ and $$55^\circ \,\hbox {W}$$ 55 ∘ W . We present evidence that this ring formation behavior has been asymmetric over both interannual and seasonal time-scales. After a previously reported regime-shift in 2000, 15 more Warm Core Rings have been forming yearly compared to 1980–1999. In contrast, there have been no changes in the annual formation rate of the Cold Core Rings. This increase in Warm Core Ring production leads to an excess heat transfer of 0.10 PW to the Slope Sea, amounting to 7.7–12.4% of the total Gulf Stream heat transport, or 5.4–7.3% of the global oceanic heat budget at $$30^\circ \,\hbox {N}$$ 30 ∘ N . Seasonally, more Cold Core Rings are produced in the winter and spring and more Warm Core Rings are produced in the summer and fall leading to more summertime heat transfer to the north of the Stream. The seasonal cycle of relative ring formation numbers is strongly correlated (r = 0.82) with that of the difference in upper layer temperatures between the Sargasso and Slope seas. This quantification motivates future efforts to understand the recent increasing influence of the Gulf Stream on the circulation and ecosystem in the western North Atlantic.more » « less
-
Abstract The convergence of different water masses on the shelf and along the shelfbreak, and cross‐isobath shelf‐open ocean exchanges contribute to the complex circulation near Cape Hatteras. We examine the mean and variability of these circulations using data from nine bottom‐mounted acoustic Doppler current profilers, deployed over the mid‐ to outer‐continental shelf north and south of Cape Hatteras as part of the Processes driving Exchange At Cape Hatteras program. The 18‐month‐mean depth‐averaged shelf flows are mostly aligned with isobaths and oriented toward Cape Hatteras. At two sites just north of Cape Hatteras, mean flows have a strong cross‐shelf component. Two dominant spatial patterns in the velocity field are obtained from an empirical orthogonal function analysis. The two leading modes contain 61% of the total variance. The spatial variation of Mode 1 exhibits an along‐shelf flow pattern, while that of Mode 2 shows a convergent flow pattern. The principal component (PC) series of Mode 1 is significantly correlated with the local wind stress, confirming that the along‐shelf flow is wind‐driven as expected. The PC of Mode 2 is highly correlated with the Gulf Stream lateral position as inferred from the current‐ and pressure‐sensor‐equipped inverted echo sounders over the slope south of Cape Hatteras, which indicates that Gulf Stream movement drives time‐varying shelf flow convergence. Conditionally averaged sea‐surface temperature and high‐frequency radar‐measured surface currents based on PC1 and PC2 confirm these relationships and further illustrate how the wind and Gulf Stream forcing work together to influence the flow regime in this region.