{"Abstract":["This dataset includes multiple fields: (i) files for monthly and annual fields for the max curl line and the zero curl line at 0.1 degree longitudinal resolutions; (ii) files for monthly and annual GS path obtained from Altimetry and originally processed by Andres (2016) at 0.1 degree longitudinal resolution. The maximum curl line (MCL) and the zero curl line (ZCL) calculations are briefly described here and are based on the original wind data (at 1.25 x 1.25 degree) provided by the Japanese reanalysis (JRA-55; Kobayashi et al., 2015) and available at https://zenodo.org/record/8200832 (Gifford et al. 2023). For details see Gifford, 2023. <\/p>\n\nThe wind stress curl (WSC) fields used for the MCL and ZCL calculations extend from 80W to 45W and 30N to 45N at the 1.25 by 1.25-degree resolution.  The MCL is defined as the maximum WSC values greater than zero within the domain per 1.25 degree longitude. As such, it is a function of longitude and is not a constant WSC value unlike the zero contour. High wind stress curl values that occurred near the coast were not included within this calculation. After MCL at the 1.25 resolution was obtained the line was smoothed with a gaussian smoothing and interpolated on to a 0.1 longitudinal resolution. The smoothed MCL lines at 0.1 degree resolution are provided in separate files for monthly and annual averages (2 files). Similarly, 2 other files (monthly and annual) are provided for the ZCL.    <\/p>\n\nLike the MCL, the ZCL is a line derived from 1.25 degree longitude throughout the domain under the condition that it's the line of zero WSC. The ZCL is constant at 0 and does not vary spatially like the MCL. If there are more than one location of zero curl for a given longitude the first location south of the MCL is selected. Similar to the MCL, the ZCL was smoothed with a gaussian smoothing and interpolated on to a 0.1 longitudinal resolution.   <\/p>\n\nThe above files span the years from 1980 through 2019. So, the monthly files have 480 months starting January 1980, and the annual files have 40 years of data. The files are organized with each row being a new time step and each column being a different longitude. Therefore, the monthly MCL and ZCL files are each 480 x 351 for the 0.1 resolution data. Similarly, the annual files are 40 x 351 for the 0.1 degree resolution data.  <\/p>\n\nNote that the monthly MCLs and ZCLs are obtained from the monthly wind-stress curl fields. The annual MCLs and ZCLs are obtained from the annual wind-stress curl fields.<\/strong><\/p>\n\nSince the monthly curl fields preserves more atmospheric mesoscales than the annual curl fields, the 12-month average of the monthly MCLs and ZCLs will not match with the annual MCLs and ZCLs derived from the annual curl field.  The annual MCLs and ZCLs provided here are obtained from the annual curl fields and representative metrics of the wind forcing on an annual time-scale. <\/p>\n\nFurthermore, the monthly Gulf Stream axis path (25 cm isoheight from Altimeter, reprocessed by Andres (2016) technique) from 1993 through 2019 have been made available here. A total of 324 monthly paths of the Gulf Stream are tabulated. In addition, the annual GS paths for these 27 years (1993-2019) of altimetry era have been put together for ease of use. The monthly Gulf Stream paths have been resampled and reprocessed for uniqueness at every 0.1 degree longitude from 75W to 50W and smoothed with a 100 km (10 point) running average via matlab. The uniqueness has been achieved by using Consolidator algorithm (D\u2019Errico, 2023). <\/p>\n\nEach monthly or annual GS path has 251 points between 75W to 50W at 0.1 degree resolution.  <\/p>"],"Other":["Please contact igifford@earth.miami.edu for any queries.","{"references": ["Andres, M., 2016. On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras. Geophysical Research Letters, 43(18), 9836-9842.", "D'Errico, J., 2023. Consolidator (https://www.mathworks.com/matlabcentral/fileexchange/ 8354-consolidator), MATLAB Central File Exchange. Retrieved June 17, 2023.", "Gifford, Ian. H., 2023. The Synchronicity of the Gulf Stream Free Jet and the Wind Induced Cyclonic Vorticity Pool. MS Thesis, University of Massachusetts Dartmouth. 75pp.", "Gifford, Ian, H., Avijit Gangopadhyay, Magdalena Andres, Glen Gawarkiewicz, Hilde Oliver, Adrienne Silver, 2023. Wind Stress, Wind Stress Curl, and Upwelling Velocities in the Northwest Atlantic (80-45W, 30-45N) during 1980-2019, https://zenodo.org/record/8200832.", "Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\\u202fJournal of the Meteorological Society of Japan. Ser. II,\\u202f93(1), pp.5-48. Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\\u202fJournal of the Meteorological Society of Japan. Ser. II,\\u202f93(1), pp.5-48."]}"]} 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Synchronicity of the Gulf Stream path downstream of Cape Hatteras and the region of maximum wind stress curl
                        
                    
    
            Abstract The Gulf Stream, a major ocean current in the North Atlantic ocean is a key component in the global redistribution of heat and is important for marine ecosystems. Based on 27 years (1993–2019) of wind reanalysis and satellite altimetry measurements, we present observational evidence that the path of this freely meandering jet after its separation from the continental slope at Cape Hatteras, aligns with the region of maximum cyclonic vorticity of the wind stress field known as the positive vorticity pool. This synchronicity between the wind stress curl maximum region and the Gulf Stream path is observed at multiple time-scales ranging from months to decades, spanning a distance of 1500 km between 70 and 55W. The wind stress curl in the positive vorticity pool is estimated to drive persistent upward vertical velocities ranging from 5 to 17 cm day−1over its ~ 400,000 km2area; this upwelling may supply a steady source of deep nutrients to the Slope Sea region, and can explain as much as a quarter of estimated primary productivity there. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10536964
- Editor(s):
- Pan, J
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Edition / Version:
- 1
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Subject(s) / Keyword(s):
- Gulf Stream path Wind Stress Curl Maxima of Curl Positive Vorticity Pool Synchronicity Ocean Atmosphere Interaction Wind driven ocean circulation
- Format(s):
- Medium: X Size: 2MB Other: pdf
- Size(s):
- 2MB
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Surface ocean temperature and velocity anomalies at meso‐ and sub‐meso‐scales induce wind stress anomalies. These wind‐front interactions, referred to as thermal (TFB) and current (CFB) feedbacks, respectively, have been studied in isolation at mesoscale, yet they have rarely been considered in tandem. Here, we assess the combined influence of TFB and CFB and their relative impact on surface wind stress derivatives. Analyses are based on output from two regions of the Southern Ocean in a coupled simulation with local ocean resolution of 2 km. Considering both TFB and CFB shows regimes of interference, which remain mostly linear down to the simulation resolution. The jointly‐generated wind stress curl anomalies approach 10−5 N m−3, ∼20 times stronger than at mesoscale. The synergy of both feedbacks improves the ability to reconstruct wind stress curl magnitude and structure from both surface vorticity and SST gradients by 12%–37% on average, compared with using either feedback alone.more » « less
- 
            Abstract The climatological mean barotropic vorticity budget is analyzed to investigate the relative importance of surface wind stress, topography, planetary vorticity advection, and nonlinear advection in dynamical balances in a global ocean simulation. In addition to a pronounced regional variability in vorticity balances, the relative magnitudes of vorticity budget terms strongly depend on the length‐scale of interest. To carry out a length‐scale dependent vorticity analysis in different ocean basins, vorticity budget terms are spatially coarse‐grained. At length‐scales greater than 1,000 km, the dynamics closely follow the Topographic‐Sverdrup balance in which bottom pressure torque, surface wind stress curl and planetary vorticity advection terms are in balance. In contrast, when including all length‐scales resolved by the model, bottom pressure torque and nonlinear advection terms dominate the vorticity budget (Topographic‐Nonlinear balance), which suggests a prominent role of oceanic eddies, which are of km in size, and the associated bottom pressure anomalies in local vorticity balances at length‐scales smaller than 1,000 km. Overall, there is a transition from the Topographic‐Nonlinear regime at scales smaller than 1,000 km to the Topographic‐Sverdrup regime at length‐scales greater than 1,000 km. These dynamical balances hold across all ocean basins; however, interpretations of the dominant vorticity balances depend on the level of spatial filtering or the effective model resolution. On the other hand, the contribution of bottom and lateral friction terms in the barotropic vorticity budget remains small and is significant only near sea‐land boundaries, where bottom stress and horizontal viscous friction generally peak.more » « less
- 
            Abstract Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, nonlocal BPT and thus nonlocal circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the windsonlywhen integrated over latitude bands. Integrating over other, dynamically motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a nonnegligible role in structuring the gyre circulation. Nonlocal bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend a previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.more » « less
- 
            null (Ed.)Abstract The path of the Gulf Stream as it leaves the continental shelf near Cape Hatteras is marked by a sharp gradient in ocean temperature known as the North Wall. The latitude location of the Gulf Stream North Wall (GSNW) has previously been estimated by subjective analysis of daily maps of sea surface temperatures. Recently, Watelet et al. (2017) presented an objective procedure by fitting an error function to the SST profile across the Gulf Stream at 81 longitude positions. The fit smooths over not only the GSNW but also the much colder waters from the Labrador Sea on the continental shelf. Watelet et al.’s procedure is therefore likely to misidentify the shelf-slope front as the Gulf Stream North Wall, leading to a systematic northward bias the in North Wall position.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
