skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ge, Xiaochen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Integration of quantum emitters in photonic structures is an important step in the broader quest to generate and manipulate on-demand single photons via compact solid-state devices. Unfortunately, implementations relying on material platforms that also serve as the emitter host often suffer from a tradeoff between the desired emitter properties and the photonic system practicality and performance. Here, we demonstrate “pick and place” integration of a Si 3 N 4 microdisk optical resonator with a bright emitter host in the form of ∼20-nm-thick hexagonal boron nitride (hBN). The film folds around the microdisk maximizing contact to ultimately form a hybrid hBN/Si 3 N 4 structure. The local strain that develops in the hBN film at the resonator circumference deterministically activates a low density of defect emitters within the whispering gallery mode volume of the microdisk. These conditions allow us to demonstrate cavity-mediated out-coupling of emission from defect states in hBN through the microdisk cavity modes. Our results pave the route toward the development of chip-scale quantum photonic circuits with independent emitter/resonator optimization for active and passive functionalities. 
    more » « less