skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Genise, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. on Ahn, Hopper and Langford introduced the notion of steganographic a.k.a. covert computation, to capture distributed computation where the attackers must not be able to distinguish honest parties from entities emitting random bitstrings. This indistinguishability should hold for the duration of the computation except for what is revealed by the intended outputs of the computed functionality. An important case of covert computation is mutually authenticated key exchange, a.k.a. mutual authentication. Mutual authentication is a fundamental primitive often preceding more complex secure protocols used for distributed computation. However, standard authentication implementations are not covert, which allows a network adversary to target or block parties who engage in authentication. Therefore, mutual authentication is one of the premier use cases of covert computation and has numerous real-world applications, e.g., for enabling authentication over steganographic channels in a network controlled by a discriminatory entity. We improve on the state of the art in covert authentication by presenting a protocol that retains covertness and security under concurrent composition, has minimal message complexity, and reduces protocol bandwidth by an order of magnitude compared to previous constructions. To model the security of our scheme we develop a UC model which captures standard features of secure mutual authentication but extends them to covertness. We prove our construction secure in this UC model. We also provide a proof-of-concept implementation of our scheme. 
    more » « less
  2. Bhargavan, K.; Oswald, E.; Prabhakaran, M. (Ed.)
    We present two new related families of lattice trapdoors based on the inhomogeneous NTRU problem (iNTRU) defined in Genise et al. [16] (ASIACRYPT 2019). Our constructions are “gadget-based” and offer compact secret keys and preimages and compatibility with existing, efficient preimage sampling algorithms. Our trapdoors can be used as a fundamental building block in lattice-based schemes relying lattice trapdoors. In addition, we implemented our trapdoors using the PALISADE library. 
    more » « less
  3. null (Ed.)