The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Alzheimer's disease (AD) and its associated pathology have been primarily identified in humans, who have relatively large brains and long lifespans. To expand what is known about aging and neurodegeneration across mammalian species, we characterized amyloid‐beta (Aβ) and tau lesions in five species of aged felids (
n = 9; cheetah, clouded leopard, African lion, serval, Siberian tiger). We performed immunohistochemistry to detect Aβ40 and Aβ42 in plaques and vessels and hyperphosphorylated tau in the temporal lobe gyrus sylvius and in the CA1 and CA3 subfields of the hippocampus. We also quantified the densities and morphological types of microglia expressing IBA1. We found that diffuse Aβ42 plaques, but not dense‐core plaques, were present more frequently in the temporal cortex and tended to be more common than Aβ40 plaques across species. Conversely, vascular Aβ was labeled more consistently with Aβ40 for each species on average. Although all individuals showed some degree of Aβ40 and/or Aβ42 immunoreactivity, only the cheetahs and clouded leopards exhibited intraneuronal hyperphosphorylated tau (i.e., pretangles), which was more common in the hippocampus. Reactive, intermediate microglia were significantly associated with total Aβ40 vessel area and pretangle load in the hippocampus. This study demonstrates the co‐occurrence of Aβ and tau pathology in two felid species, cheetahs and clouded leopards. Overall, these results provide an initial view of the manifestation of Aβ and tau pathology in aged, large‐brained felids, which can be compared with markers of neurodegeneration across different taxa, including domestic cats, nonhuman primates, and humans. -
Abstract Climate‐driven ecosystem shifts occur through turnover in the foundation species which structure the landscape. Therefore, to predict the fate of areas undergoing climate‐driven ecosystem shifts, one approach is to characterize ecological and evolutionary responses of foundation species along dynamic environmental gradients. One such gradient is the ecotone between tidal marshes and maritime forests in coastal areas of the US Mid‐Atlantic region where accelerated sea‐level rise and coastal storms of increased frequency and intensity are driving forest dieback and inland marsh migration. Mid‐Atlantic tidal marshes are structured by marsh grasses which act as foundation species, and these grasses exhibit trait variation across their distribution from established marsh interior to their inland migration front. We conducted a reciprocal transplant experiment with
Spartina patens , a dominant high marsh grass and foundation species, between established populations in the high marsh and range edge populations in the forest understory at three Mid‐Atlantic sites. We monitored environmental conditions in marsh and forest understory habitats, measured plant traits (above‐ and belowground biomass, specific leaf area, leaf N and C concentrations) in transplanted and reference non‐transplanted individuals, and used microsatellite markers to determine the genetic identity of transplants to quantify clonality between habitats and sites. Individuals transplanted into the forest understory exhibited a plastic shift in resource allocation to aboveground structures associated with light acquisition, with shifts in transplants making them more morphologically similar to reference individuals sampled from the forest habitat. Clonal diversity and genetic distance among transplants were relatively high at two of three sites, but individuals at all sites exhibited trans‐habitat plasticity regardless of clonal diversity or a lack thereof. Individuals grown in the forest understory showed lower vegetative and reproductive fitness. Nevertheless, the trait plasticity exhibited by this species allowed individuals from the forest that were transplanted into the marsh to recoup significant biomass in only a single growing season. We predict high plasticity will facilitate the persistence of colonizingS. patens individuals under suboptimal forest shade conditions until forest dieback increases light availability, ultimately promoting continued inland migration of this foundation species under sea‐level rise. -
The behavioral sciences have had great success in their study of the mechanisms that drive behavior. However, they have had less impact on applied settings or policy. This gap results from the very adaptability that makes human behavior useful. Adaptability implies that behavior will be highly specific to the context in which it occurs. Thus, building a bridge between the lab and application requires testing in the specific applied setting, which runs afoul of the high cost of data collection. This cost has also led to a focus on simple paradigms that poorly match applied settings. However, crowdsourcing enables data collection at vastly reduced budgets and schedules. This new cost regime also enables paradigms better suited to applied settings. Behavioral science should now be used throughout applied- and policy-focused projects.
-
In contexts marked by high violence and widespread impunity, how do citizens articulate and justify their preferences about crime and punishment? What kind of moral logic and reasoning do they employ when discussing punishments? Does support for punitive punishment derive from moralistic and deontological concerns that perpetrators need to be punished because it is right and proper? Or do people support punitive punishments because they feel they are effective? To address this question, we document and analyze stated preferences for punishment in response to crime from 62 in-depth qualitative interviews with individuals affected by violence in the Mexican state of Michoacán. We conduct a quantitative analysis of how different forms of moral justifications are related to preferred punishments for specific crime events, and a qualitative content analysis to investigate possible mechanisms. We find that two types of moral reasoning are more likely to be used to justify punitive violence: (1) consequentialist reasoning which involves weighing the costs and benefits of an action; (2) and reasoning that dehumanizes accused criminals. Deontological justifications about the right or just action, while extremely common, are used fairly equally across arguments for and against punitive violence. Our study sheds light on the diverse moral frames employed to justify the endorsement of punitive violence.
-
Summary Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified.
We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood).
Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites.
Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.
-
Abstract Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk‐free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high‐fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold‐coated silver nanowires (Au–Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au–Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2–7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
-
Abstract In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.