skip to main content


Search for: All records

Creators/Authors contains: "Georgescu, Matei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compound dry-hot extreme (CDHE) events pose greater risks to the environment, society, and human health than their univariate counterparts. Here, we project decadal-length changes in the frequency and duration of CDHE events for major U.S. cities during the 21st century. Using the Weather Research and Forecasting (WRF) model coupled to an urban canopy parameterization, we find a considerable increase in the frequency and duration of future CDHE events across all U.S. major cities under the compound effect of high-intensity GHG- and urban development-induced warming. Our results indicate that while GHG-induced warming is the primary driver of the increased frequency and duration of CDHE events, urban development amplifies this effect and should not be neglected. Furthermore, We show that the highest frequency amplification of major CDHE events is expected for U.S. cities across the Great Plains South, Southwest, and the southern part of the Northwest National Climate Assessment regions.

     
    more » « less
  2. Abstract

    Different heat mitigation technologies have been developed to improve the thermal environment in cities. However, the regional impacts of such technologies, especially in the context of a tropical city, remain unclear. The deployment of heat mitigation technologies at city‐scale can change the radiation balance, advective flow, and energy balance between urban areas and the overlying atmosphere. We used the mesoscale Weather Research and Forecasting model coupled with a physically based single‐layer urban canopy model to assess the impacts of five different heat mitigation technologies on surface energy balance, standard surface meteorological fields, and planetary boundary layer (PBL) dynamics for premonsoon typical hot summer days over a tropical coastal city in the month of April in 2018, 2019, and 2020. Results indicate that the regional impacts of cool materials (CMs), super‐cool broadband radiative coolers, green roofs (GRs), vegetation fraction change, and a combination of CMs and GRs (i.e., “Cool city (CC)”) on the lower atmosphere are different at diurnal scale. Results showed that super‐cool materials have the maximum potential of ambient temperature reduction of 1.6°C during peak hour (14:00 LT) compared to other technologies in the study. During the daytime hours, the PBL height was considerably lower than the reference scenario with no implementation of strategies by 700 m for super‐cool materials and 500 m for both CMs and CC cases; however, the green roofing system underwent nominal changes over the urban area. During the nighttime hours, the PBL height increased by CMs and the CC strategies compared to the reference scenario, but minimal changes were evident for super‐cool materials. The changes of temperature on the vertical profile of the heat mitigation implemented city reveal a stable PBL over the urban domain and a reduction of the vertical mixing associated with a pollution dome. This would lead to crossover phenomena above the PBL due to the decrease in vertical wind speed. Therefore, assessing the coupled regional impact of urban heat mitigation over the lower atmosphere at city‐scale is urgent for sustainable urban planning.

     
    more » « less
  3. Abstract

    Exertional heat illness and stroke are serious concerns across youth and college sports programs. While some teams and governing bodies have adopted the wet bulb globe temperature (WBGT), few practitioners use measurements on the field of play; rather, they often rely on regionally modeled or estimated WBGT. However, urban development-induced heat and projected climate change increase exposure to heat. We examined WBGT levels between various athletic surfaces and regional weather stations under current and projected climates and in hot-humid and hot-dry weather regimes in the southwest U.S. in Tempe, Arizona. On-site sun-exposed WBGT data across five days (07:00–19:00 local time) in June (dry) and August (humid) were collected over five athletic surfaces: rubber, artificial turf, clay, grass, and asphalt. Weather station data were used to estimate regional WBGT (via the Liljegren model) and compared to on-site, observed WBGT. Finally, projected changes to WBGT were modeled under mid-century and late-century conditions. On-field WBGT observations were, on average, significantly higher than WBGT estimated from regional weather stations by 2.4 °C–2.5 °C, with mean on-field WBGT across both months of 28.5 ± 2.76 °C (versus 25.8 ± 3.21 °C regionally). However, between-athletic surface WBGT differences were largely insignificant. Significantly higher mean WBGTs occurred in August (30.1 ± 2.35 °C) versus June (26.9 ± 2.19 °C) across all venues; August conditions reached ‘limit activity’ or ‘cancellation’ thresholds for 6–8 h and 2–4 h of the day, respectively, for all sports venues. Climate projections show increased WBGTs across measurement locations, dependent on projection and period, with average August WBGT under the highest representative concentration pathway causing all-day activity cancellations. Practitioners are encouraged to use WBGT devices within the vicinity of the fields of play, yet should not rely on regional weather station estimations without corrections used. Heat concerns are expected to increase in the future, underlining the need for athlete monitoring, local cooling design strategies, and heat adaptation for safety.

     
    more » « less
  4. Abstract

    The air temperature cooling impacts of infrastructure-based adaptation measures in expanding urban areas and under changing climatic conditions are not well understood. We present simulations conducted with the Weather Research and Forecasting (WRF) model, coupled to a multi-layer urban model that explicitly resolves pedestrian-level conditions. Our simulations dynamically downscale global climate projections, account for projected urban growth, and examine cooling impacts of extensive cool roof deployment in Atlanta, Detroit, and Phoenix (USA). The simulations focus on heatwave events that are representative of start-, middle-, and end-of-century climatic conditions. Extensive cool roof implementation is projected to cause a maximum city-averaged daytime air temperature cooling of 0.38 °C in Atlanta; 0.42 °C in Detroit; and 0.66 °C in Phoenix. We propose a means for practitioners to estimate the impact of cool roof treatments on pedestrian-level air temperature, for a chosen roof reflectivity, with a new metric called the Albedo Cooling Effectiveness (ACE). The ACE metric reveals that, on average, cool roofs in Phoenix are 11% more effective at lowering pedestrian-level air temperature than in Atlanta, and 30% more effective than in Detroit. Cool roofs remain similarly effective under future heatwaves relative to contemporary heatwaves for Atlanta and Detroit, with some indication of increased effectiveness under future heatwaves for Phoenix. By highlighting the underlying factors that drive cooling effectiveness in a trio of cities located in different climatic regions, we demonstrate a robust framework for estimating the pedestrian-level cooling impacts associated with reflective roofs without the need for computationally demanding simulations.

     
    more » « less
  5. We use a suite of decadal-length regional climate simulations to quantify potential changes in population-weighted heat and cold exposure in 47 US metropolitan regions during the 21st century. Our results show that population-weighted exposure to locally defined extreme heat (i.e., “population heat exposure”) would increase by a factor of 12.7–29.5 under a high-intensity greenhouse gas (GHG) emissions and urban development pathway. Additionally, end-of-century population cold exposure is projected to rise by a factor of 1.3–2.2, relative to start-of-century population cold exposure. We identify specific metropolitan regions in which population heat exposure would increase most markedly and characterize the relative significance of various drivers responsible for this increase. The largest absolute changes in population heat exposure during the 21st century are projected to occur in major US metropolitan regions like New York City (NY), Los Angeles (CA), Atlanta (GA), and Washington DC. The largest relative changes in population heat exposure (i.e., changes relative to start-of-century) are projected to occur in rapidly growing cities across the US Sunbelt, for example Orlando (FL), Austin (TX), Miami (FL), and Atlanta. The surge in population heat exposure across the Sunbelt is driven by concurrent GHG-induced warming and population growth which, in tandem, could strongly compound population heat exposure. Our simulations provide initial guidance to inform the prioritization of urban climate adaptation measures and policy.

     
    more » « less
  6. Abstract

    With over half of the world’s population living in cities, there is mounting evidence indicating that investments in urban sustainability can deliver high returns on socioeconomic and environmental fronts. Current scholarship on urban agriculture (UA) reports a wide range of benefits which have been shown to vary with the scale and type of benefit examined. Notably, most city-scale studies do not align benefits of UA with locally meaningful goals. We fill this gap by conducting a city-scale analysis for Phoenix, the fifth largest city in the USA by population, and evaluate these benefits based on their ability to contribute to select desired outcomes specified in Phoenix’s 2050 Sustainability Goals: the elimination of food deserts, provision of green open space, and energy and CO2emissions savings from buildings. We consider three types of surfaces for UA deployment—undeveloped vacant lots, flat rooftops, and building façades—and find that the existing building stock provides 71% of available UA space in the study area. The estimated total food supply from UA is 183 000 tons per year, providing local produce in all existing food deserts of Phoenix, and meeting 90% of current annual consumption of fresh produce based on national per capita consumption patterns. UA would also add green open space and reduce by 60% the number of block groups underserved by public parks. Rooftop deployment of UA could reduce energy use in buildings and has the potential to displace more than 50 000 tons of CO2per year. Our work highlights the importance of combining a data-driven framework with local information to address place-based sustainability goals and can be used as a template for city-scale evaluations of UA in alternate settings.

     
    more » « less
  7. Abstract

    In the US, more than 80% of fatal cases of heat exposure are reported in urban areas. Notably, indoor exposure is implicated in nearly half of such cases, and lack of functioning air conditioning (AC) is the predominant cause of overheating. For residents with limited capacity to purchase, maintain, and operate an AC system, or during summertime power outages, the ability of buildings to maintain safe thermal conditions without mechanical cooling is the primary protective factor against heat. In this paper, we use whole-building energy simulations to compare indoor air temperature inside archetypical single-family residential buildings without AC at the start and middle of the century in eight US cities. We ran the models using hourly output from 10 year regional climate simulations that explicitly include heating from mid-century projections of urban development and climate change under a ‘business-as-usual’ emissions scenario. Moreover, to identify the impacts from evolving construction practices, we compare different versions of building energy standards. Our analysis shows that summertime overheat time may increase by up to 25% by the middle of century. Moreover, we find that, while newer building energy codes reduce thermal comfort under moderate outdoor weather, they perform better under extreme heat.

     
    more » « less