skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Exploring the Meteorological Impacts of Surface and Rooftop Heat Mitigation Strategies Over a Tropical City

Different heat mitigation technologies have been developed to improve the thermal environment in cities. However, the regional impacts of such technologies, especially in the context of a tropical city, remain unclear. The deployment of heat mitigation technologies at city‐scale can change the radiation balance, advective flow, and energy balance between urban areas and the overlying atmosphere. We used the mesoscale Weather Research and Forecasting model coupled with a physically based single‐layer urban canopy model to assess the impacts of five different heat mitigation technologies on surface energy balance, standard surface meteorological fields, and planetary boundary layer (PBL) dynamics for premonsoon typical hot summer days over a tropical coastal city in the month of April in 2018, 2019, and 2020. Results indicate that the regional impacts of cool materials (CMs), super‐cool broadband radiative coolers, green roofs (GRs), vegetation fraction change, and a combination of CMs and GRs (i.e., “Cool city (CC)”) on the lower atmosphere are different at diurnal scale. Results showed that super‐cool materials have the maximum potential of ambient temperature reduction of 1.6°C during peak hour (14:00 LT) compared to other technologies in the study. During the daytime hours, the PBL height was considerably lower than the reference scenario with no implementation of strategies by 700 m for super‐cool materials and 500 m for both CMs and CC cases; however, the green roofing system underwent nominal changes over the urban area. During the nighttime hours, the PBL height increased by CMs and the CC strategies compared to the reference scenario, but minimal changes were evident for super‐cool materials. The changes of temperature on the vertical profile of the heat mitigation implemented city reveal a stable PBL over the urban domain and a reduction of the vertical mixing associated with a pollution dome. This would lead to crossover phenomena above the PBL due to the decrease in vertical wind speed. Therefore, assessing the coupled regional impact of urban heat mitigation over the lower atmosphere at city‐scale is urgent for sustainable urban planning.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cool materials and rooftop vegetation help achieve urban heating mitigation as they can reduce building cooling demands. This study assesses the cooling potential of different mitigation technologies using Weather Research and Forecasting (WRF)- taking case of a tropical coastal climate in the Kolkata Metropolitan Area. The model was validated using data from six meteorological sites. The cooling potential of eight mitigation scenarios was evaluated for: three cool roofs, four green roofs, and their combination (cool-city). The sensible heat, latent heat, heat storage, 2-m ambient temperature, surface temperature, air temperature, roof temperature, and urban canopy temperature was calculated. The effects on the urban boundary layer were also investigated.

    The different scenarios reduced the daytime temperature of various urban components, and the effect varied nearly linearly with increasing albedo and green roof fractions. For example, the maximum ambient temperature decreased by 3.6 °C, 0.9 °C, and 1.4 °C for a cool roof with 85% albedo, 100% rooftop vegetation, and their combination.

    The cost of different mitigation scenarios was assumed to depend on the construction options, location, and market prices. The potential for price per square meter and corresponding temperature decreased was related to one another. Recognizing the complex relationship between scenarios and construction options, the reduction in the maximum and minimum temperature across different cool and green roof cases were used for developing the cost estimates. This estimate thus attempted a summary of the price per degree of cooling for the different potential technologies.

    Higher green fraction, cool materials, and their combination generally reduced winds and enhanced buoyancy. The surface changes alter the lower atmospheric dynamics such as low-level vertical mixing and a shallower boundary layer and weakened horizontal convective rolls during afternoon hours. Although cool materials offer the highest temperature reductions, the cooling resulting from its combination and a green roof strategy could mitigate or reverse the summertime heat island effect. The results highlight the possibilities for heat mitigation and offer insight into the different strategies and costs for mitigating the urban heating and cooling demands.

    more » « less
  2. Abstract

    Modification of grasslands into irrigated and nonirrigated agriculture in the Great Plains resulted in significant impacts on weather and climate. However, there has been lack of observational data–based studies solely focused on impacts of irrigation on the PBL and convective conditions. The Great Plains Irrigation Experiment (GRAINEX), conducted during the 2018 growing season, collected data over irrigated and nonirrigated land uses over Nebraska to understand these impacts. Specifically, the objective was to determine whether the impacts of irrigation are sustained throughout the growing season. The data analyzed include latent and sensible heat flux, air temperature, dewpoint temperature, equivalent temperature (moist enthalpy), PBL height, lifting condensation level (LCL), level of free convection (LFC), and PBL mixing ratio. Results show increased partitioning of energy into latent heat relative to sensible heat over irrigated areas while average maximum air temperature was decreased and dewpoint temperature was increased from the early to peak growing season. Radiosonde data suggest reduced planetary boundary layer (PBL) heights at all launch sites from the early to peak growing season. However, reduction of PBL height was much greater over irrigated areas than over nonirrigated croplands. Relative to the early growing period, LCL and LFC heights were also lower during the peak growing period over irrigated areas. Results note, for the first time, that the impacts of irrigation on PBL evolution and convective environment can be sustained throughout the growing season and regardless of background atmospheric conditions. These are important findings and applicable to other irrigated areas in the world.

    Significance Statement

    To meet the ever-increasing demand for food, many regions of the world have adopted widespread irrigation. The High Plains Aquifer (HPA) region, located within the Great Plains of the United States, is one of the most extensively irrigated regions. In this study, for the first time, we have conducted a detailed irrigation-focused land surface and atmospheric data collection campaign to determine irrigation impacts on the atmosphere. This research demonstrates that irrigation significantly alters lower atmospheric characteristics and creates favorable cloud and convection development conditions during the growing season. The results clearly show first-order impacts of irrigation on regional weather and climate and hence warrant further attention so that we can minimize negative impacts and achieve sustainable irrigation.

    more » « less
  3. The Great Plains (GP) low-level jet (GPLLJ) contributes to GP warm season water resources (precipitation), wind resources, and severe weather outbreaks. Past research has shown that synoptic and local mesoscale physical mechanisms (Holton and Blackadar mechanisms) are required to explain GPLLJ variability. Although soil moisture–PBL interactions are central to local mechanistic theories, the diurnal effect of regional soil moisture anomalies on GPLLJ speed, northward penetration, and propensity for severe weather is not well known. In this study, two 31-member WRF-ARW stochastic kinetic energy backscatter scheme ensembles simulate a typical warm season GPLLJ case under CONUS-wide wet and dry soil moisture scenarios. In the GP (24°–48°N, 103°–90°W), ensemble mean differences in sensible heating and PBL height of 25–150 W m −2 and 100–700 m, respectively, at 2100 UTC (afternoon) culminate in GPLLJ 850-hPa wind speed differences of 1–4 m s −1 12 hours later (0900 UTC; early morning). Greater heat accumulation in the daytime PBL over dry soil impacts the east–west geopotential height gradient in the GP (synoptic conditions and Holton mechanism) resulting in a deeper thermal low in the northern GP, causing increases in the geostrophic wind. Enhanced daytime turbulent mixing over dry soil impacts the PBL structure (Blackadar mechanism), leading to increased ageostrophic wind. Overnight geostrophic and ageostrophic winds constructively interact, leading to a faster nocturnal GPLLJ over dry soil. Ensemble differences in CIN (~50–150 J kg −1 ) and CAPE (~500–1000 J kg −1 ) have implications for severe weather predictability. 
    more » « less
  4. null (Ed.)
    Abstract Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations. 
    more » « less
  5. Abstract This paper analyzed observations from the Great Plains Irrigation Experiment (GRAINEX) to better understand L-A interactions and PBL evolution. This study is focused on a day when the largest forcing on the boundary layer originated from the land surface/land use. To examine these impacts, we also applied the Weather Research and Forecasting (WRF) model. Results from the observations show that compared to non-irrigated areas, air temperature, wind speed, and PBL height were lower while dew point temperature and latent heat flux were higher over irrigated areas. Findings suggest that entrainment layer drying and differences in energy partitioning over irrigated and non-irrigated areas played an important role in PBL evolution. In the final hours of the day, the PBL collapsed faster over non-irrigated areas compared to irrigated. The WRF model simulations agree with these observations. They also show that the extent of irrigation (expressed as irrigation fraction or IF) in an area impacts L-A response. Under ∼60% IF, the latent heat flux and mixing ratio reach their highest value while temperature and PBLH are at their lowest, and sensible heat flux is near its lowest value. Results are reversed for ∼2% IF. It is concluded that irrigation notably impacts L-A interactions and PBL evolution. 
    more » « less