skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Gershunov, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability.

    more » « less
  2. Abstract

    Low‐level stratiform clouds modulate California's coastal climate during the warm season. Previous work describing the seasonal and daily variability of coastal low cloudiness (CLC) suggests that in July, August, and September southern California's CLC is under the influence of an additional driver, which has less impact in northern California. In this work, we introduce the link in which free‐tropospheric moisture dictated by North American Monsoon (NAM) processes can impact southern California CLC. We use in situ and remote sensing observations, as well as reanalysis and single column model simulations to identify and investigate this previously missing component. We find that monsoonal moisture advected by southeasterly flow from the core NAM region into southern California reduces CLC by diminishing cloud‐top longwave cooling. To add to an already complex brew of known factors influencing coastal cloudiness, another one is hereby introduced and should be accounted for in future work.

    more » « less
  3. null (Ed.)
    Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such ‘transcritical variation’, abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006–2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0–21.0°C) and favourable (22.7–30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21–22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds. 
    more » « less
  4. Abstract

    Downslope winds are mesoscale mountain meteorological phenomena that contribute to localized temperature extremes and contribute to numerous societal and environmental impacts. Whereas previous studies have examined local downslope winds, no known efforts have attempted to identify and characterize meso‐ to synoptic‐scale downslope winds globally using a common approach. We use a conceptual model for downslope winds that employs cross‐barrier wind speed, near‐mountain top static stability, and downward vertical velocity using thresholds guided by a chronology of local downslope winds and meta‐analysis of downslope wind case studies. This approach was applied to ERA‐5 reanalysis during 1979–2018 to develop a global atlas of downslope winds. Downslope winds adhered to distinct geographic and seasonal patterns, with peak occurrence in north–south oriented midlatitude mountains in the winter hemisphere associated with strong cross‐mountain winds and stability. However, we identify numerous locations from the tropics to the high‐latitudes where downslope winds occur at least 60 days a year as a byproduct of the general circulation and local‐scale circulation interacting with topography. The four‐decade‐long data set is also used to examine statistical relationships between the occurrence of downslope winds and El Niño‐Southern Oscillation as well as long‐term trends in downslope wind occurrence.

    more » « less
  5. Abstract

    We downscale Santa Ana winds (SAWs) from eight global climate models (GCMs) and validate key aspects of their climatology over the historical period. We then assess SAW evolution and behavior through the 21st century, paying special attention to changes in their extreme occurrences. All GCMs project decreases in SAW activity, starting in the early 21st century, which are commensurate with decreases in the southwestward pressure gradient force that drives these winds. The trend is most pronounced in the early and late SAW season: fall and spring. It is mainly determined by changes in the frequency of SAW events, less so by changes in their intensity. The peak of the SAW season (November–December–January) is least affected by anthropogenic climate change in GCM projections.

    more » « less