Forecasts of heavy precipitation delivered by atmospheric rivers (ARs) are becoming increasingly important for both flood control and water supply management in reservoirs across California. This study examines the hypothesis that medium-range forecasts of heavy precipitation at the basin scale exhibit recurrent spatial biases that are driven by mesoscale and synoptic-scale features of associated AR events. This hypothesis is tested for heavy precipitation events in the Sacramento River basin using 36 years of NCEP medium-range reforecasts from 1984 to 2019. For each event we cluster precipitation forecast error across western North America for lead times ranging from 1 to 15 days. Integrated vapor transport (IVT), 500-hPa geopotential heights, and landfall characteristics of ARs are composited across clusters and lead times to diagnose the causes of precipitation forecast biases. We investigate the temporal evolution of forecast error to characterize its persistence across lead times, and explore the accuracy of forecasted IVT anomalies across different domains of the North American west coast during heavy precipitation events in the Sacramento basin. Our results identify recurrent spatial patterns of precipitation forecast error consistent with errors of forecasted synoptic-scale features, especially at long (5–15 days) leads. Moreover, we find evidence that forecasts of AR landfalls well outside of the latitudinal bounds of the Sacramento basin precede heavy precipitation events within the basin. These results suggest the potential for using medium-range forecasts of large-scale climate features across the Pacific–North American sector, rather than just local forecasts of basin-scale precipitation, when designing forecast-informed reservoir operations. 
                        more » 
                        « less   
                    
                            
                            From California’s Extreme Drought to Major Flooding: Evaluating and Synthesizing Experimental Seasonal and Subseasonal Forecasts of Landfalling Atmospheric Rivers and Extreme Precipitation during Winter 2022/23
                        
                    
    
            Abstract California experienced a historic run of nine consecutive landfalling atmospheric rivers (ARs) in three weeks’ time during winter 2022/23. Following three years of drought from 2020 to 2022, intense landfalling ARs across California in December 2022–January 2023 were responsible for bringing reservoirs back to historical averages and producing damaging floods and debris flows. In recent years, the Center for Western Weather and Water Extremes and collaborating institutions have developed and routinely provided to end users peer-reviewed experimental seasonal (1–6 month lead time) and subseasonal (2–6 week lead time) prediction tools for western U.S. ARs, circulation regimes, and precipitation. Here, we evaluate the performance of experimental seasonal precipitation forecasts for winter 2022/23, along with experimental subseasonal AR activity and circulation forecasts during the December 2022 regime shift from dry conditions to persistent troughing and record AR-driven wetness over the western United States. Experimental seasonal precipitation forecasts were too dry across Southern California (likely due to their overreliance on La Niña), and the observed above-normal precipitation across Northern and Central California was underpredicted. However, experimental subseasonal forecasts skillfully captured the regime shift from dry to wet conditions in late December 2022 at 2–3 week lead time. During this time, an active MJO shift from phases 4 and 5 to 6 and 7 occurred, which historically tilts the odds toward increased AR activity over California. New experimental seasonal and subseasonal synthesis forecast products, designed to aggregate information across institutions and methods, are introduced in the context of this historic winter to provide situational awareness guidance to western U.S. water managers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2022868
- PAR ID:
- 10567868
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 105
- Issue:
- 1
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E84 to E104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.more » « less
- 
            Abstract Successive atmospheric river (AR) events—known as AR families—can result in prolonged and elevated hydrological impacts relative to single ARs due to the lack of recovery time between periods of precipitation. Despite the outsized societal impacts that often stem from AR families, the large-scale environments and mechanisms associated with these compound events remain poorly understood. In this work, a new reanalysis-based 39-yr catalog of 248 AR family events affecting California between 1981 and 2019 is introduced. Nearly all (94%) of the interannual variability in AR frequency is driven by AR family versus single events. Usingk-means clustering on the 500-hPa geopotential height field, six distinct clusters of large-scale patterns associated with AR families are identified. Two clusters are of particular interest due to their strong relationship with phases of El Niño–Southern Oscillation (ENSO). One of these clusters is characterized by a strong ridge in the Bering Sea and Rossby wave propagation, most frequently occurs during La Niña and neutral ENSO years, and is associated with the highest cluster-average precipitation across California. The other cluster, characterized by a zonal elongation of lower geopotential heights across the Pacific basin and an extended North Pacific jet, most frequently occurs during El Niño years and is associated with lower cluster-average precipitation across California but with a longer duration. In contrast, single AR events do not show obvious clustering of spatial patterns. This difference suggests that the potential predictability of AR families may be enhanced relative to single AR events, especially on subseasonal to seasonal time scales.more » « less
- 
            Abstract During December 2022–January 2023, nine atmospheric rivers (ARs) struck California consecutively, causing catastrophic flooding and 600+ landslides. The extensive footprints of landslide‐triggering storms and their diverse hydrometeorological forcings highlight the urgent need to incorporate regional‐scale hydrometeorology into landslide research. Here, using a meteorologically‐informed hydrologic model, we simulate the time‐evolving water budget during the nine‐AR event and identify hydrometeorological conditions that contributed to widespread landslide occurrences across California. Our analysis reveals that 89% of observed landslides occurred under excessively wet conditions, driven by precipitation exceeding the capacities of infiltration, storage, evapotranspiration, and soil drainage. Using K‐means clustering, we identify three distinct hydrometeorological pathways that increased landslide potential: intense precipitation‐induced runoff (∼32% of reported landslides), rain on pre‐wetted soils (∼53%), and snowmelt and soil ice thawing (∼15%). Our findings highlight the importance of constraining the compounding factors that influence slope stability over spatial scales consistent with landslide‐triggering weather systems.more » « less
- 
            Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    