skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geschwind, Gayle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE) was designed to measure students’ proficiency with measurement uncertainty concepts and practices across ten different assessment objectives to help facilitate the improvement of laboratory instruction focused on this important topic. To ensure the reliability and validity of this assessment, we conducted a comprehensive statistical analysis using classical test theory. This analysis includes an evaluation of the test as a whole, as well as an in-depth examination of individual items and assessment objectives. We make use of a previously reported on scoring scheme involving pairing items with assessment objectives, creating a new unit for statistical analysis referred to as a “couplet.” The findings from our analysis provide evidence for the reliability and validity of SPRUCE as an assessment tool for undergraduate physics labs. This increases both instructors’ and researchers’ confidence in using SPRUCE for measuring students’ proficiency with measurement uncertainty concepts and practices to ultimately improve laboratory instruction. Additionally, our results using couplets and assessment objectives demonstrate how these can be used with traditional classic test theory analysis. Published by the American Physical Society2024 
    more » « less
  2. Physics education research (PER) is a global endeavor, with a wealth of work performed at a variety of institutions worldwide. However, results from research into undergraduate physics laboratory courses are often difficult to compare due to the broad variations in courses. We report here how we developed and validated a survey to classify these courses, as well as compare and contrast them. This will be useful in two key endeavors: comparisons between PER studies and providing useful data for individual instructors hoping to improve their courses. While we are still in the process of collecting sufficient data to create a full taxonomy of laboratory courses, we present here details of the survey creation itself, including its face, construct, and content validation, as well as a first look at the data collected, which includes a broad landscape of lab courses in 41 countries. We used both quantitative and qualitative methods to analyze the data collected. Some of these results include similarities between courses, such as students often using preconstructed apparatuses and instructors hoping for students to learn technical skills. We also find differences in courses, such as in the number and types of goals of the course, as well as the activities students participate in. Thus, this survey and its results can provide information relevant to both researchers and instructors. Published by the American Physical Society2024 
    more » « less
  3. Concepts and practices surrounding measurement uncertainty are vital knowledge for physicists and are often emphasized in undergraduate physics laboratory courses. We have previously developed a research-based assessment instrument—the Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE)—to examine student proficiency with measurement uncertainty along a variety of axes, including sources of uncertainty, handling of uncertainty, and distributions and repeated measurements. We present here initial results from the assessment representing over 1500 students from 20 institutions. We analyze students’ performance pre- and postinstruction in lab courses and examine how instruction impacts students with different majors and gender. We find that students typically excel in certain areas, such as reporting the mean of a distribution as their result, while they struggle in other areas, such as comparing measurements with uncertainty and correctly propagating errors using formulas. Additionally, we find that the importance that an instructor places in certain areas of measurement uncertainty is uncorrelated with student performance in those areas. Published by the American Physical Society2024 
    more » « less