skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghaderi, Javad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets. However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the interface designer’s desired latency expectations and resource constraints. Cloud DBMSs, while optimized for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and optimization techniques for data interfaces. This involves manually navigating a huge optimization space that is sensitive to interface design and resource constraints, such as client vs server data and compute placement, choosing which computations are done offline vs online, and selecting from a large library of visualization-optimized data structures. This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from system design to provide design independence. Given an interfaces underlying data flow, interactions with latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations. To this end, this paper presents Jade, the first prototype PVD tool that enables design independence. Jade proposes an intermediate representation called Diffplans to represent the data flows, develops cost estimation models that trade off between latency guarantees and plan feasibility, and implements an optimization framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six representative data interfaces as compared to Mosaic and Azure SQL database. We find Jade supports a wider range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and resource conditions. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  2. Free, publicly-accessible full text available May 6, 2026
  3. Free, publicly-accessible full text available December 4, 2025
  4. Free, publicly-accessible full text available October 11, 2025
  5. Blind and low-vision (BLV) people rely on GPS-based systems for outdoor navigation. GPS's inaccuracy, however, causes them to veer off track, run into obstacles, and struggle to reach precise destinations. While prior work has made precise navigation possible indoors via hardware installations, enabling this outdoors remains a challenge. Interestingly, many outdoor environments are already instrumented with hardware such as street cameras. In this work, we explore the idea of repurposing existing street cameras for outdoor navigation. Our community-driven approach considers both technical and sociotechnical concerns through engagements with various stakeholders: BLV users, residents, business owners, and Community Board leadership. The resulting system, StreetNav, processes a camera's video feed using computer vision and gives BLV pedestrians real-time navigation assistance. Our evaluations show that StreetNav guides users more precisely than GPS, but its technical performance is sensitive to environmental occlusions and distance from the camera. We discuss future implications for deploying such systems at scale 
    more » « less