- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ghaemi, Golsana (3)
-
Mancuso, Renato (3)
-
Bastoni, Andrea (2)
-
Caccamo, Marco (2)
-
Corradi, Giulio (2)
-
Hoornaert, Denis (2)
-
Tarapore, Dharmesh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ever-increasing demand for high performance in the time-critical, low-power embedded domain drives the adoption of powerful but unpredictable, heterogeneous Systems-on-Chip. On these platforms, the main source of unpredictability—the shared memory subsystem—has been widely studied, and several approaches to mitigate undesired effects have been proposed over the years. Among them, performance-counter-based regulation methods have proved particularly successful. Unfortunately, such regulation methods require precise knowledge of each task’s memory consumption and cannot be extended to isolate mixed-criticality tasks running on the same core as the regulation budget is shared. Moreover, the desirable combination of these methodologies with well-known time-isolation techniques—such as server-based reservations—is still an uncharted territory and lacks a precise characterization of possible benefits and limitations. Recognizing the importance of such consolidation for designing predictable real-time systems, we introduce MCTI (Mixed-Criticality Task-based Isolation) as a first initial step in this direction. MCTI is a hardware/software co-design architecture that aims to improve both CPU and memory isolations among tasks with different criticalities even when they share the same CPU. In order to ascertain the correct behavior and distill the benefits of MCTI, we implemented and tested the proposed prototype architecture on a widely available off-the-shelf platform. The evaluation of our prototype shows that (1) MCTI helps shield critical tasks from concurrent non-critical tasks sharing the same memory budget, with only a limited increase in response time being observed, and (2) critical tasks running under memory stress exhibit an average response time close to that achieved when running without memory stress.more » « less
-
Hoornaert, Denis; Ghaemi, Golsana; Bastoni, Andrea; Mancuso, Renato; Caccamo, Marco; Corradi, Giulio (, In Proceedings of the 16th Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT 2022))The ever-increasing demand for high-performance in the time-critical embedded domain has pushed the adoption of powerful yet unpredictable heterogeneous Systems-on-a-Chip. The shared memory subsystem, which is known to be a major source of unpredictability, has been extensively studied, and many mitigation techniques have been proposed. Among them, performance-counter-based regulation techniques have seen widespread adoption. However, the problem of combining performance-based regulation with time-domain isolation has not received enough attention. In this article, we discuss our current work-in-progress on SHCReg (Software Hardware Co-design Regulator). First, we assess the limitations and benefits of combined CPU and memory budgeting. Next, we outline a full-stack hardware/software co-design architecture that aims at improving the interplay between CPU and memory isolation for mixed-criticality tasks running on the same core.more » « less
-
Ghaemi, Golsana; Tarapore, Dharmesh; Mancuso, Renato (, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021))null (Ed.)
An official website of the United States government

Full Text Available