skip to main content


Search for: All records

Creators/Authors contains: "Ghimire, Mukesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finding Nash equilibrial policies for two-player differential games requires solving Hamilton-Jacobi-Isaacs (HJI) PDEs. Self-supervised learning has been used to approximate solutions of such PDEs while circumventing the curse of dimensionality. However, this method fails to learn discontinuous PDE solutions due to its sampling nature, leading to poor safety performance of the resulting controllers in robotics applications when player rewards are discontinuous. This paper investigates two potential solutions to this problem: a hybrid method that leverages both supervised Nash equilibria and the HJI PDE, and a value-hardening method where a sequence of HJIs are solved with a gradually hardening reward. We compare these solutions using the resulting generalization and safety performance in two vehicle interaction simulation studies with 5D and 9D state spaces, respectively. Results show that with informative supervision (e.g., collision and near-collision demonstrations) and the low cost of self-supervised learning, the hybrid method achieves better safety performance than the supervised, self-supervised, and value hardening approaches on equal computational budget. Value hardening fails to generalize in the higher-dimensional case without informative supervision. Lastly, we show that the neural activation function needs to be continuously differentiable for learning PDEs and its choice can be case dependent. 
    more » « less
    Free, publicly-accessible full text available May 29, 2024
  2. This paper addresses incomplete-information dynamic games, where reward parameters of agents are private. Previous studies have shown that online belief update is necessary for deriving equilibrial policies of such games, especially for high-risk games such as vehicle interactions. However, updating beliefs in real time is computationally expensive as it requires continuous computation of Nash equilibria of the sub-games starting from the current states. In this paper, we consider the triggering mechanism of belief update as a policy defined on the agents’ physical and belief states, and propose learning this policy through reinforcement learning (RL). Using a two-vehicle uncontrolled intersection case, we show that intermittent belief update via RL is sufficient for safe interactions, reducing the computation cost of updates by 59% when agents have full observations of physical states. Simulation results also show that the belief update frequency will increase as noise becomes more significant in measurements of the vehicle positions. 
    more » « less