skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Ghose, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We model a multiagent system (MAS) in socio-technical terms, combining a social layer consisting of norms with a technical layer consisting of actions that the agents execute. We express stakeholder needs to ensure that a MAS demonstrates resilience, allowing it to recover effectively from failures within a brief timeframe. This extended abstract presents a framework that computes probabilistic and temporal guarantees on whether the underlying requirements are met or, if failed, recovered. An important contribution of the framework is that it shows how the social and technical layers can be modeled jointly to enable the construction of resilient systems of autonomous agents. This paper facilitates specification refinement through methodological guidelines, emphasizing joint modeling of social and technical layers. We demonstrate our framework using a manufacturing scenario with competing public, industrial, and environmental requirements. This is an extended abstract of our JAAMAS paper available online. 
    more » « less
  2. We model a multiagent system (MAS) in socio-technical terms, combining a social layer consisting of norms with a technical layer consisting of actions that the agents execute. This approach emphasizes autonomy, and makes assumptions about both the social and technical layers explicit. Autonomy means that agents may violate norms. In our approach, agents are computational entities, with each representing a different stakeholder. We express stakeholder requirements of the form that a MAS is resilient in that it can recover (sufficiently) from a failure within a (sufficiently short) duration. We present ReNo, a framework that computes probabilistic and temporal guarantees on whether the underlying requirements are met or, if failed, recovered. ReNo supports the refinement of the specification of a socio-technical system through methodological guidelines to meet the stated requirements. An important contribution of ReNo is that it shows how the social and technical layers can be modeled jointly to enable the construction of resilient systems of autonomous agents. We demonstrate ReNo using a manufacturing scenario with competing public, industrial, and environmental requirements. 
    more » « less
  3. Everyone acknowledges the importance of responsible computing but practical advice is hard to come by. Important Internet applications are ways to accomplish business processes. We investigate how they can be geared to support responsibility as illustrated via sustainability. Sustainability is not only urgent and essential but also challenging due to engagement with human and societal concerns, diverse success criteria, and extended temporal and spatial scope. This article introduces a new framework for developing responsible Internet applications that synthesizes the perspectives of Theory of Change, Participatory System Mapping, and Computational Sociotechnical Systems. 
    more » « less