Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, 11 algorithms have been designed with various tradeoffs in degree and stretch-factor. We have implemented these sophisticated spanner algorithms in C ++ using the CGAL library and experimented with them using large synthetic and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We share the implementations via GitHub for broader uses and future research. We design and engineer EstimateStretchFactor , a simple practical algorithm, which can estimate stretch-factors (obtains lower bounds on the exact stretch-factors) of geometric spanners—a challenging problem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric spanners, we found that EstimateStretchFactor estimated stretch-factors almost precisely. Further, it gave linear runtime performance in practice for the pointset distributions considered in this work, making it much faster than the naive Dijkstra-based algorithm for calculating stretch-factors.more » « less
- 
            In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.more » « less
- 
            There is growing interest in the study of thin-film pyroelectric materials because of their potential for high performance thermal-energy conversion, thermal sensing, and beyond. Electrothermal susceptibilities, such as pyroelectricity, are known to be enhanced in proximity to polar instabilities, and this is conventionally accomplished by positioning the material close to a temperature-driven ferroelectric-to-paraelectric phase transition. The high Curie temperature (TC) for many ferroelectrics, however, limits the utility of these materials at room-temperature. Here, the nature of pyroelectric response in thin films of the widely studied multiferroic Bi1−xLaxFeO3 (x = 0–0.45) is probed. While BiFeO3 itself has a high TC, lanthanum substitution results in a chemically induced lowering of the ferroelectric-to-paraelectric and structural-phase transition. The effect of isovalent lanthanum substitution on the structural, dielectric, ferroelectric, and pyroelectric response is investigated using reciprocal-space-mapping studies; field-, frequency-, and temperature-dependent electrical measurements; and phase-sensitive pyroelectric measurements, respectively. While BiFeO3 itself has a rather small pyroelectric coefficient at room temperature (∼−40 µC/m2 K), 15% lanthanum substitution results in an enhancement of the pyroelectric coefficient by 100% which is found to arise from a systematic lowering of TC.more » « less
- 
            Abstract The ability to produce atomically precise, artificial oxide heterostructures allows for the possibility of producing exotic phases and enhanced susceptibilities not found in parent materials. Typical ferroelectric materials either exhibit large saturation polarization away from a phase boundary or large dielectric susceptibility near a phase boundary. Both large ferroelectric polarization and dielectric permittivity are attained wherein fully epitaxial (PbZr0.8Ti0.2O3)n/(PbZr0.4Ti0.6O3)2n(n= 2, 4, 6, 8, 16 unit cells) superlattices are produced such that the overall film chemistry is at the morphotropic phase boundary, but constitutive layers are not. Long‐ (n≥ 6) and short‐period (n= 2) superlattices reveal large ferroelectric saturation polarization (Ps= 64 µC cm−2) and small dielectric permittivity (εr≈ 400 at 10 kHz). Intermediate‐period (n= 4) superlattices, however, exhibit both large ferroelectric saturation polarization (Ps= 64 µC cm−2) and dielectric permittivity (εr= 776 at 10 kHz). First‐order reversal curve analysis reveals the presence of switching distributions for each parent layer and a third, interfacial layer wherein superlattice periodicity modulates the volume fraction of each switching distribution and thus the overall material response. This reveals that deterministic creation of artificial superlattices is an effective pathway for designing materials with enhanced responses to applied bias.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available