Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Photoactive organic and hybrid organic–inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure–photophysics–property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron–hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct – the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.more » « less
-
null (Ed.)Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.more » « less
-
Abstract Molecular doping of conjugated polymers causes bleaching of the neutral absorbance and results in new polaron absorbance transitions in the mid and near infrared. Here, the concentration dependent changes in the spectra for a series of molecularly doped diketopyrrolopyrrole (DPP) co‐polymers with a series of ultra‐high electron affinity cyanotrimethylenecyclopropane‐based dopants is analyzed. With these strong dopants the polaron mole fraction (Θ) reaches saturation. Analysis of the full spectrum enables separation of neutral and polaron signals and quantification of the polaron mole fraction using a simple noninteracting site model. The peak ratios for both neutral and polaron peaks change systematically with increasing polaron mole fraction for all measured polymers. Analysis of the spectral changes indicates that the polaron mole fraction can be quantified to within 5%. While the total change in the absorbance spectrum with increasing polaron mole fraction is linear, the lowest energy polaron peak (P1) grows nonlinearly, which indicates increased polarization/delocalization. Molecular doping of polymers that form either H‐ or J‐aggregates shows systematically different spectral changes in the vibronic peak ratios of the neutral spectra and provides insights into the polymer configuration at undoped sites in the film.more » « less
-
Abstract The properties of molecularly doped films of conjugated polymers are explored as the crystallinity of the polymer is systematically varied. Solution sequential processing (SqP) was used to introduce 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) into poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) while preserving the pristine polymer's degree of crystallinity. X‐ray data suggest that F4TCNQ anions reside primarily in the amorphous regions of the film as well as in the P3HT lamellae between the side chains, but do not π‐stack within the polymer crystallites. Optical spectroscopy shows that the polaron absorption redshifts with increasing polymer crystallinity and increases in cross section. Theoretical modeling suggests that the polaron spectrum is inhomogeneously broadened by the presence of the anions, which reside on average 6–8 Å from the polymer backbone. Electrical measurements show that the conductivity of P3HT films doped by F4TCNQ via SqP can be improved by increasing the polymer crystallinity. AC magnetic field Hall measurements show that the increased conductivity results from improved mobility of the carriers with increasing crystallinity, reaching over 0.1 cm2V−1s−1in the most crystalline P3HT samples. Temperature‐dependent conductivity measurements show that polaron mobility in SqP‐doped P3HT is still dominated by hopping transport, but that more crystalline samples are on the edge of a transition to diffusive transport at room temperature.more » « less
An official website of the United States government
