skip to main content


Search for: All records

Creators/Authors contains: "Giachetti, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset archived with the Magnetics Information Consortium contains rock-magnetic data for rhyolitic pumice and obsidian from Glass Mountain, Medicine Lake, California, USA. Data were generated at Montclair State University and include magnetic susceptibility measured at 976Hz and 3904Hz, magnetic susceptibility vs. temperature, anhysteretic remanent magnetization (ARM), and magnetic hysteresis measurements. This dataset accompanies the publication Brachfeld, S., McCartney, K., Hammer, J.E., Shea, T., Giachetti, T., Evaluating the role of titanomagnetite in bubble nucleation: Rock magnetic detection and characterization of nanolites and ultra-nanolites in rhyolite pumice and obsidian from Glass Mountain, California, Geochemistry Geophysics Geosystems, https://doi.org/10.1029/2023GC011336. 
    more » « less
  2. This dataset archived with the Earthref Magnetics Information Consortium contains low-temperature remanent magnetization data generated at the Institute for Rock Magnetism, University of Minnesota. This dataset accompanies the publication McCartney, K., Hammer, J.E., Shea, T., Brachfeld, S., Giachetti, T., 2024. Investigating the role of nanoscale titanomagnetite in bubble nucleation via novel applications of magnetic analyses (Dataset), Magnetics Information Consortium (MagIC), doi:10.7288/V4/MAGIC/20019. 
    more » « less
  3. We document the presence, composition, and number density (TND) of titanomagnetite nanolites and ultra‐nanolites in aphyric rhyolitic pumice, obsidian, and vesicular obsidian from the 1060 CE Glass Mountain volcanic eruption of Medicine Lake Volcano, California, using magnetic methods. Curie temperatures indicate compositions of Fe2.40Ti0.60O4 to Fe3O4. Rock‐magnetic parameters sensitive to domain state, which is dependent on grain volume, indicate a range of particle sizes spanning superparamagnetic (<50–80 nm) to multidomain (>10 μm) particles. Cylindrical cores drilled from the centers of individual pumice clasts display anisotropy of magnetic susceptibility with prolate fabrics, with the highest degree of anisotropy coinciding with the highest vesicularity. Fabrics within a pumice clast require particle alignment within a fluid, and are interpreted to result from the upward transport of magma driven by vesiculation, ensuing bubble growth, and shearing in the conduit. Titanomagnetite number density (TND) is calculated from titanomagnetite volume fraction, which is determined from ferromagnetic susceptibility. TND estimates for monospecific assemblages of 1,000 nm–10 nm cubes predict 10^12 to 10^20 m^−3 of solid material, respectively. TND estimates derived using a power law distribution of grain sizes predict 10^18 to 10^19  m^−3. These ranges agree well with TND determinations of 10^18 to 10^20  m^−3 made by McCartney et al. (2024), and are several orders of magnitude larger than the number density of bubbles in these materials. These observations are consistent with the hypothesis that titanomagnetite crystals already existed in extremely high number‐abundance at the time of magma ascent and bubble nucleation. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  4. Nucleation of H2O vapor bubbles in magma requires surpassing a chemical supersaturation threshold via decompression. The threshold is minimized in the presence of a nucleation substrate (heterogeneous nucleation, <50 MPa), and maximized when no nucleation substrate is present (homogeneous nucleation, >100 MPa). The existence of explosively erupted aphyric rhyolite magma staged from shallow (<100 MPa) depths represents an apparent paradox that hints at the presence of a cryptic nucleation substrate. In a pair of studies focusing on Glass Mountain eruptive units from Medicine Lake, California, we characterize titanomagnetite nanolites and ultrananolites in pumice, obsidian, and vesicular obsidian (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336), calculate titanomagnetite crystal number densities, and compare titanomagnetite abundance with the physical properties of pumice to evaluate hypotheses on the timing of titanomagnetite crystallization. Titanomagnetite crystals with grain sizes of approximately 3–33 nm are identified in pumice samples from the thermal unblocking of low‐temperature thermoremanent magnetization. The titanomagnetite number densities for pumice are 10^18 to 10^20 m^−3, comparable to number densities in pumice and obsidian obtained from room temperature methods (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336'>https://doi.org/10.1029/2023GC011336). This range exceeds reported bubble number densities (BND) within the pumice from the same eruptive units (average BND ∼4 × 10^14 m^−3). The similar abundances of nm‐scale titanomagnetite crystals in the effusive and explosive products of the same eruption, together with the lack of correlation between pumice permeability and titanomagnetite content, are consistent with titanomagnetite formation having preceded the bubble formation. Results suggest sub‐micron titanomagnetite crystals are responsible for heterogeneous bubble nucleation in this nominally aphyric rhyolite magma. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  5. Abstract

    Pyroclastic density currents (PDCs) are the most lethal volcanic process on Earth. Forecasting their inundation area is essential to mitigate their risk, but existing models are limited by our poor understanding of their dynamics. Here, we explore the role of evolving grain-size distribution in controlling the runout of the most common PDCs, known as block-and-ash flows (BAFs). Through a combination of theory, analysis of deposits and experiments of natural mixtures, we show that rapid changes of the grain-size distribution transported in BAFs result in the reduction of pore volume (compaction) within the first kilometres of their runout. We then use a multiphase flow model to show how the compressibility of granular mixtures leads to fragmentation-induced fluidisation (FIF) and excess pore-fluid pressure in BAFs. This process dominates the first ~2 km of their runout, where the effective friction coefficient is progressively reduced. Beyond that distance, transport is modulated by diffusion of the excess pore pressure. Fragmentation-induced fluidisation provides a physical basis to explain the decades-long use of low effective friction coefficients used in depth-averaged simulations required to match observed flow inundation.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. Abstract

    Mass mortality of marine animals due to volcanic ash deposition is present in the fossil record but has rarely been documented in real time. Here, using remotely-operated vehicle video footage and analysis of ash collected at the seafloor, we describe the devastating effect of the record-breaking 2022 Hunga submarine volcanic eruption on endangered and vulnerable snail and mussel species that previously thrived at nearby deep-sea hydrothermal vents. In contrast to grazing, scavenging, filter-feeding, and predatory vent taxa, we observed mass mortality, likely due to smothering during burial by thick ash deposits, of the foundation species, which rely on symbiotic chemosynthetic bacteria for the bulk of their nutrition. This is important for our broad understanding of the natural disturbance of marine ecosystems by volcanic eruptions and for predicting the effects of anthropogenic disturbance, like deep-sea mining, on these unique seafloor habitats.

     
    more » « less
  7. Abstract Following rapid decompression in the conduit of a volcano, magma breaks into ash- to block-sized fragments, powering explosive sub-Plinian and Plinian eruptions that may generate destructive pyroclastic falls and flows. It is thus crucial to assess how magma breaks up into fragments. This task is difficult, however, because of the subterranean nature of the entire process and because the original size of pristine fragments is modified by secondary fragmentation and expansion. New textural observations of sub-Plinian and Plinian pumice lapilli reveal that some primary products of magma fragmentation survive by sintering together within seconds of magma break-up. Their size distributions reflect the energetics of fragmentation, consistent with products of rapid decompression experiments. Pumice aggregates thus offer a unique window into the previously inaccessible primary fragmentation process and could be used to determine the potential energy of fragmentation. 
    more » « less
  8. Abstract

    Magma‐water interaction can dramatically influence the explosivity of volcanic eruptions. However, syn‐ and post‐eruptive diffusion of external (non‐magmatic) water into volcanic glass remains poorly constrained and may bias interpretation of water in juvenile products. Hydrogen isotopes in ash from the 2009 eruption of Redoubt Volcano, Alaska, record syn‐eruptive hydration by vaporized glacial meltwater. Both ash aggregation and hydration occurred in the wettest regions of the plume, which resulted in the removal and deposition of the most hydrated ash in proximal areas <50 km from the vent. Diffusion models show that the high temperatures of pyroclast‐water interactions (>400°C) are more important than the cooling rate in facilitating hydration. These observations suggest that syn‐eruptive glass hydration occurred where meltwater was entrained at high temperature, in the plume margins near the vent. Ash in the drier plume interior remained insulated from entrained meltwater until it cooled sufficiently to avoid significant hydration.

     
    more » « less