skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Role of Titanomagnetite in Bubble Nucleation: Novel Applications of Low Temperature Magnetic Analysis and Textural Characterization of Rhyolite Pumice and Obsidian From Glass Mountain, California
Nucleation of H2O vapor bubbles in magma requires surpassing a chemical supersaturation threshold via decompression. The threshold is minimized in the presence of a nucleation substrate (heterogeneous nucleation, <50 MPa), and maximized when no nucleation substrate is present (homogeneous nucleation, >100 MPa). The existence of explosively erupted aphyric rhyolite magma staged from shallow (<100 MPa) depths represents an apparent paradox that hints at the presence of a cryptic nucleation substrate. In a pair of studies focusing on Glass Mountain eruptive units from Medicine Lake, California, we characterize titanomagnetite nanolites and ultrananolites in pumice, obsidian, and vesicular obsidian (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336), calculate titanomagnetite crystal number densities, and compare titanomagnetite abundance with the physical properties of pumice to evaluate hypotheses on the timing of titanomagnetite crystallization. Titanomagnetite crystals with grain sizes of approximately 3–33 nm are identified in pumice samples from the thermal unblocking of low‐temperature thermoremanent magnetization. The titanomagnetite number densities for pumice are 10^18 to 10^20 m^−3, comparable to number densities in pumice and obsidian obtained from room temperature methods (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336'>https://doi.org/10.1029/2023GC011336). This range exceeds reported bubble number densities (BND) within the pumice from the same eruptive units (average BND ∼4 × 10^14 m^−3). The similar abundances of nm‐scale titanomagnetite crystals in the effusive and explosive products of the same eruption, together with the lack of correlation between pumice permeability and titanomagnetite content, are consistent with titanomagnetite formation having preceded the bubble formation. Results suggest sub‐micron titanomagnetite crystals are responsible for heterogeneous bubble nucleation in this nominally aphyric rhyolite magma.  more » « less
Award ID(s):
1839230 1839313 0521069 0948262 2153786
PAR ID:
10502181
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
25
Issue:
4
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset archived with the Magnetics Information Consortium contains rock-magnetic data for rhyolitic pumice and obsidian from Glass Mountain, Medicine Lake, California, USA. Data were generated at Montclair State University and include magnetic susceptibility measured at 976Hz and 3904Hz, magnetic susceptibility vs. temperature, anhysteretic remanent magnetization (ARM), and magnetic hysteresis measurements. This dataset accompanies the publication Brachfeld, S., McCartney, K., Hammer, J.E., Shea, T., Giachetti, T., Evaluating the role of titanomagnetite in bubble nucleation: Rock magnetic detection and characterization of nanolites and ultra-nanolites in rhyolite pumice and obsidian from Glass Mountain, California, Geochemistry Geophysics Geosystems, https://doi.org/10.1029/2023GC011336. 
    more » « less
  2. We document the presence, composition, and number density (TND) of titanomagnetite nanolites and ultra‐nanolites in aphyric rhyolitic pumice, obsidian, and vesicular obsidian from the 1060 CE Glass Mountain volcanic eruption of Medicine Lake Volcano, California, using magnetic methods. Curie temperatures indicate compositions of Fe2.40Ti0.60O4 to Fe3O4. Rock‐magnetic parameters sensitive to domain state, which is dependent on grain volume, indicate a range of particle sizes spanning superparamagnetic (<50–80 nm) to multidomain (>10 μm) particles. Cylindrical cores drilled from the centers of individual pumice clasts display anisotropy of magnetic susceptibility with prolate fabrics, with the highest degree of anisotropy coinciding with the highest vesicularity. Fabrics within a pumice clast require particle alignment within a fluid, and are interpreted to result from the upward transport of magma driven by vesiculation, ensuing bubble growth, and shearing in the conduit. Titanomagnetite number density (TND) is calculated from titanomagnetite volume fraction, which is determined from ferromagnetic susceptibility. TND estimates for monospecific assemblages of 1,000 nm–10 nm cubes predict 10^12 to 10^20 m^−3 of solid material, respectively. TND estimates derived using a power law distribution of grain sizes predict 10^18 to 10^19  m^−3. These ranges agree well with TND determinations of 10^18 to 10^20  m^−3 made by McCartney et al. (2024), and are several orders of magnitude larger than the number density of bubbles in these materials. These observations are consistent with the hypothesis that titanomagnetite crystals already existed in extremely high number‐abundance at the time of magma ascent and bubble nucleation. 
    more » « less
  3. Abstract We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011,https://doi.org/10.1029/2011JB008369) and Paterson et al. (2017,https://doi.org/10.1073/pnas.1714047114), respectively. A curvature value of 0.164 (suggested by Paterson, 2011,https://doi.org/10.1029/2011JB008369) as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004,https://doi.org/10.1029/2003GC000630) paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory. 
    more » « less
  4. Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. 
    more » « less
  5. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less