skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gibbs, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available September 1, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Abstract Urbanization creates heterogeneous selective landscapes that cause the evolution of urban-rural clines in phenotypic traits. Although cities can introduce novel selection pressures, little attention has been paid to the role of selection outside the city in maintaining urban-rural clines. We integrate whole genome sequencing, demographic modeling, and complementary models of selection to test how natural selection in both urban and rural environments shapes the evolution of an urban-rural cline in coat color in eastern gray squirrels (Sciurus carolinensis). Coat color polymorphism in this species, which presents as either gray or melanic, is primarily determined by a 24-bp deletion in the melanocortin-1 receptor gene (Mc1R). Melanic squirrels are more prevalent in urban environments but rare or absent in rural forests. Whole genome sequencing and demographic modeling revealed substantially greater urban-rural divergence at Mc1R than the genomic background, suggesting urban-rural clines in melanism are maintained by selection. We applied three separate approaches leveraging demographic and genomic data to estimate the selection coefficient against Mc1R alleles in each habitat, producing a surprising, yet consistent finding: strong selection against the melanic morph in the rural environment and near neutrality in the city. Our findings demonstrate that selection outside the city can be sufficient to maintain urban-rural clines, and urban environments can maintain genetic diversity that would otherwise be lost in rural landscapes. This study provides a rare opportunity to unravel both the spatial dynamics and the selective pressures shaping trait variation in a widespread vertebrate species, highlighting the complex and sometimes protective role of urban landscapes in evolutionary processes. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  5. Abstract Urbanization is the dominant trend of global land use change. The replicated nature of environmental change associated with urbanization should drive parallel evolution, yet insight into the repeatability of evolutionary processes in urban areas has been limited by a lack of multi-city studies. Here we leverage community science data on coat color in > 60,000 eastern gray squirrels (Sciurus carolinensis) across 43 North American cities to test for parallel clines in melanism, a genetically based trait associated with thermoregulation and crypsis. We show the prevalence of melanism was positively associated with urbanization as measured by impervious cover. Urban–rural clines in melanism were strongest in the largest cities with extensive forest cover and weakest or absent in cities with warmer winter temperatures, where thermal selection likely limits the prevalence of melanism. Our results suggest that novel traits can evolve in a highly repeatable manner among urban areas, modified by factors intrinsic to individual cities, including their size, land cover, and climate. 
    more » « less
  6. Abstract Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest‐dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation‐by‐distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas. 
    more » « less