Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Extreme precision radial velocity (EPRV) measurements contend with internal noise (instrumental systematics) and external noise (intrinsic stellar variability) on the road to 10 cm s−1“exo-Earth” sensitivity. Both of these noise sources are well-probed using “Sun-as-a-star” RVs and cross-instrument comparisons. We built the Solar Calibrator (SoCal), an autonomous system that feeds stable, disk-integrated sunlight to the recently commissioned Keck Planet Finder (KPF) at the W. M. Keck Observatory. With SoCal, KPF acquires signal-to-noise ratio (S/N) ∼ 1200,R= 98,000 optical (445–870 nm) spectra of the Sun in 5 s exposures at unprecedented cadence for an EPRV facility using KPF’s fast readout mode (<16 s between exposures). Daily autonomous operation is achieved by defining an operations loop using state machine logic. Data affected by clouds are automatically flagged using a reliable quality control metric derived from simultaneous irradiance measurements. Comparing solar data across the growing global network of EPRV spectrographs with solar feeds will allow EPRV teams to disentangle internal and external noise sources and benchmark spectrograph performance. To facilitate this, all SoCal data products are immediately available to the public on the Keck Observatory Archive. We compared SoCal RVs to contemporaneous RVs from NEID, the only other immediately public EPRV solar data set. We find agreement at the 30–40 cm s−1level on timescales of several hours, which is comparable to the combined photon-limited precision. Data from SoCal were also used to assess a detector problem and wavelength calibration inaccuracies associated with KPF during early operations. Long-term SoCal operations will collect upwards of 1000 solar spectra per six-hour day using KPF’s fast readout mode, enabling stellar activity studies at high S/N on our nearest solar-type star.more » « less
- 
            ABSTRACT We present the largest Galactic neutral hydrogen H i absorption survey to date, utilizing the Australian SKA Pathfinder Telescope at an unprecedented spatial resolution of 30 arcsec. This survey, GASKAP-H i, unbiasedly targets 2714 continuum background sources over 250 square degrees in the direction of the Magellanic Clouds, a significant increase compared to a total of 373 sources observed by previous Galactic absorption surveys across the entire Milky Way. We aim to investigate the physical properties of cold (CNM) and warm (WNM) neutral atomic gas in the Milky Way foreground, characterized by two prominent filaments at high Galactic latitudes (between $$-45^{\circ }$$ and $$-25^{\circ }$$). We detected strong H i absorption along 462 lines of sight above the 3$$\sigma$$ threshold, achieving an absorption detection rate of 17 per cent. GASKAP-H i’s unprecedented angular resolution allows for simultaneous absorption and emission measurements to sample almost the same gas clouds along a line of sight. A joint Gaussian decomposition is then applied to absorption-emission spectra to provide direct estimates of H i optical depths, temperatures, and column densities for the CNM and WNM components. The thermal properties of CNM components are consistent with those previously observed along a wide range of Solar neighbourhood environments, indicating that cold H i properties are widely prevalent throughout the local interstellar medium. Across our region of interest, CNM accounts for $$\sim$$30 per cent of the total H i gas, with the CNM fraction increasing with column density towards the two filaments. Our analysis reveals an anticorrelation between CNM temperature and its optical depth, which implies that CNM with lower optical depth leads to a higher temperature.more » « less
- 
            Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)We present a compact, double-pass cross-dispersed echelle spectrograph that is tailored specifically to cover the 383 nm to 403 nm spectral range and record R∼16,000 spectra of the stellar chromospheric Ca II H and K lines. This `H and K' spectrometer was developed as a subsystem of the Keck Planet Finder (KPF), which is an extremely precise optical (440 - 870 nm) radial velocity spectrograph for Keck I, scheduled for commissioning Fall 2022, with the science objective of measuring precise masses of exoplanets. The H and K spectrometer will observe simultaneously with KPF to independently track the chromospheric activity of the host stars that KPF observes, which is expected to dominate the KPF measurement floor over long timescales. The H and K Spectrometer is fiber fed from the KPF fiber injection unit with total throughput of 4-7% (top of telescope to CCD) over its operating spectral range. Here we detail the optical design trade offs, mechanical design, and first results from alignment and integration testing.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, echelle spectrometer that specializes in the discovery and characterization of exoplanets using Doppler spectroscopy. In designing KPF, the guiding principles were high throughput to promote survey speed and access to faint targets, and high stability to keep uncalibrated systematic Doppler measurement errors below 30 cm s−1. KPF achieves optical illumination stability with a tip-tilt injection system, octagonal cross-section optical fibers, a double scrambler, and active fiber agitation. The optical bench and optics with integral mounts are made of Zerodur to provide thermo-mechanical stability. The spectrometer includes a slicer to reformat the optical input, green and red channels (445-600 nm and 600-870 nm), and achieves a resolving power of ∼97,000. Additional subsystems include a separate, medium-resolution UV spectrometer (383-402 nm) to record the Ca II H & K lines, an exposure meter for real-time flux monitoring, a solar feed for sunlight injection, and a calibration system with a laser frequency comb and etalon for wavelength calibration. KPF was installed and commissioned at the W. M. Keck Observatory in late 2022 and early 2023 and is now in regular use for scientific observations. This paper presents an overview of the as-built KPF instrument and its subsystems, design considerations, and initial on-sky performance.more » « less
- 
            Abstract We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of $$\mathcal{R}_{\mathrm{HI}} \sim 1.04$$ ) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
- 
            Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
