skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez, Eric Baldemar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. If the dark sector possesses long-range self-interactions, these interactions can source dramatic collective instabilities even in astrophysical settings where the collisional mean free path is long. Here, we focus on the specific case of dark matter halos composed of a dark U ( 1 ) gauge sector undergoing a dissociative cluster merger. We study this by performing the first dedicated particle-in-cell plasma simulations of interacting dark matter streams, tracking the growth, formation, and saturation of instabilities through both the linear and nonlinear regimes. We find that these instabilities give rise to local (dark) electromagnetic inhomogeneities that serve as scattering sites, inducing an effective dynamic collisional cross section. Mapping this effective cross section onto existing results from large-scale simulations of the Bullet Cluster, we extend the limit on the dark charge-to-mass ratio by over 10 orders of magnitude. Our results serve as a simple example of the rich phenomenology that may arise in a dark sector with long-range interactions and motivate future dedicated study of such “dark plasmas.” Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. A bstract A new beam dump experiment that utilizes the beam of future high energy electron-positron colliders could be an excellent avenue to search for dark sector particles due to its unprecedented high energy and intensity. We consider heavy neutral leptons (HNLs) as a specific example to demonstrate the sensitivity of searches for dark sector particles at future electron-positron collider beam dump experiments. This includes the study of the reach at the International Linear Collider (ILC), the Cool Copper Collider (C 3 ), and the Compact Linear Collider (CLIC). We comprehensively examine the HNL production and detector acceptance at these electron beam dump experiments. We show that these experiments will probe regions of HNL parameter space, not yet probed by past experiments, as well as by future approved experiments. Our study also motivates a more detailed analysis of heavy meson productions in high-energy electron-nucleon collisions in thick targets. 
    more » « less