- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Girerd, Cédric (4)
-
Lin, Jui-Te (2)
-
Morimoto, Tania K (2)
-
Alvarez, Anna (1)
-
Gilbert, Hunter B (1)
-
Hawkes, Elliot W (1)
-
Hwang, John (1)
-
Hwang, John T (1)
-
Liu, Fei (1)
-
Lu, Jingpei (1)
-
Molaei, Parsa (1)
-
Morimoto, Tania K. (1)
-
Ostrander, Benjamin T (1)
-
Weissbrod, Philip A (1)
-
Yan, Jiayao (1)
-
Yip, Michael C. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Girerd, Cédric; Alvarez, Anna; Hawkes, Elliot W; Morimoto, Tania K (, IEEE Transactions on Robotics)
-
Lu, Jingpei; Liu, Fei; Girerd, Cédric; Yip, Michael C. (, IEEE)
-
Lin, Jui-Te; Girerd, Cédric; Yan, Jiayao; Hwang, John; Morimoto, Tania K. (, IEEE transactions on robotics)Concentric tube robots (CTRs) show particular promise for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Due to variations in anatomy among patients and variations in task requirements among procedures, it is necessary to customize the design of these robots on a patient- or population-specific basis. However, the complex kinematics and large design space make the design problem challenging. Here we propose a computational framework that can efficiently optimize a robot design and a motion plan to enable safe navigation through the patient’s anatomy. The current framework is the first fully gradient-based method for CTR design optimization and motion planning, enabling an efficient and scalable solution for simultaneously optimizing continuous variables, even across multiple anatomies. The framework is demonstrated using two clinical examples, laryngoscopy and heart biopsy, where the optimization problems are solved for a single patient and across multiple patients, respectively.more » « less
An official website of the United States government
