Abstract BackgroundA robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome. MethodsAs a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session. ResultsAnalyses of variance across different scenarios show that disjunctive and time-indexed optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice. ConclusionsThough it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.
more »
« less
A Generalized Framework for Concentric Tube Robot Design Using Gradient-Based Optimization
Concentric tube robots (CTRs) show particular promise for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Due to variations in anatomy among patients and variations in task requirements among procedures, it is necessary to customize the design of these robots on a patient- or population-specific basis. However, the complex kinematics and large design space make the design problem challenging. Here we propose a computational framework that can efficiently optimize a robot design and a motion plan to enable safe navigation through the patient’s anatomy. The current framework is the first fully gradient-based method for CTR design optimization and motion planning, enabling an efficient and scalable solution for simultaneously optimizing continuous variables, even across multiple anatomies. The framework is demonstrated using two clinical examples, laryngoscopy and heart biopsy, where the optimization problems are solved for a single patient and across multiple patients, respectively.
more »
« less
- Award ID(s):
- 1850400
- PAR ID:
- 10331248
- Date Published:
- Journal Name:
- IEEE transactions on robotics
- ISSN:
- 1941-0468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work proposes a modular learning framework (MIRA) for rehabilitation robots based on a new deep recurrent neural network (RNN) that achieves adaptive multi-joint motion imitation. The RNN is fed with the fundamental frequencies as well as the ranges of the joint trajectories, in order to predict the future joint trajectories of the robot. The proposed framework also uses a Segment Online Dynamic Time Warping (SODTW) algorithm to quantify the closeness between the robot and patient motion. The SODTW cost decides the amount of modification needed in the inputs to our deep RNN network, which in turn adapts the robot movements. By keeping the prediction mechanism (RNN) and adaptation mechanism (SODTW) separate, the framework achieves modularity, flexibility, and scalability. We tried both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) RNN architectures within our proposed framework. Experiments involved a group of 15 human subjects performing a range of motion tasks in conjunction with our social robot, Zeno. Comparative analysis of the results demonstrated the superior performance of the LSTM RNN across multiple task variations, highlighting its enhanced capability for adaptive motion imitation.more » « less
-
The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.more » « less
-
Background:Technology has the potential to prevent patient falls in healthcare settings and to reduce work-related injuries among healthcare providers. However, the usefulness and acceptability of each technology requires careful evaluation. Framed by the Technology Acceptance Model (TAM) and using the Adaptive Robotic Nursing Assistant (ARNA) to assist with patient ambulation, the present study examined the perceived usefulness of robots in patients’ fall prevention with implications for preventing associated work-related injuries among healthcare providers. Methods:Employing an experimental design, subjects were undergraduate nursing students ( N = 38) and one external subject (not a nursing student) who played the role of the patient. Procedures included subjects ambulating a simulated patient in three ways: (a) following the practice of a nurse assisting a patient to walk with the patient wearing a gait belt; (b) an ARNA-assisted process with the gait belt attached to ARNA; (c) an ARNA-assisted process with a subject walking a patient wearing a harness that is attached to ARNA. Block randomization was used with the following experimental scenarios: Gait Belt (human with a gait belt), “ARNA + Gait Belt” (a robot with a gait belt), and “ARNA + Harness” (a robot with a harness). Descriptive statistics and a multiple regression model were used to analyze the data and compare the outcome described as the Perceived Usefulness (PU) of a robot for patient walking versus a human “nurse assistant” without a robot. The independent variables included the experimental conditions of “Gait Belt,” “ARNA + Gait Belt,” and “ARNA + Harness,” the subject’s age, race, and previous videogame playing experience. Findings:Results indicated that PU was significantly higher in the Gait Belt + ARNA and Harness + ARNA conditions than in the Gait Belt condition ( p-value <.01 for both variables). In examining potential influencing factors, the effects of race (White, African American, and Asian), age, and previous video-playing experience were not statistically significant ( p-value >.05). Discussion:Results demonstrated that using robot technology to assist in walking patients was perceived by subjects as more useful in preventing falls than the gait belt. Patient fall prevention also has implications for preventing associated work-related injuries among healthcare providers. Implications:Understanding the effects of a subject’s perceptions can guide further development of assistive robots in patient care. Robotic engineers and interdisciplinary teams can design robots to accommodate worker characteristics and individual differences to improve worker safety and reduce work injuries.more » « less
-
Abstract Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic’s CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions.more » « less
An official website of the United States government

