skip to main content


Search for: All records

Creators/Authors contains: "Glaser, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogen in β-Ga2O3 passivates shallow impurities and deep-level defects and can have a strong effect on conductivity. More than a dozen O–D vibrational lines have been reported for β-Ga2O3 treated with the heavy isotope of hydrogen, deuterium. To explain the large number of O–D centers that have been observed, the involvement of additional nearby defects and impurities has been proposed. A few O–H centers have been associated with specific impurities that were introduced intentionally during crystal growth. However, definitive assignments of O–H and O–D vibrational lines associated with important adventitious impurities, such as Si and Fe, have been difficult. A set of well-characterized Si-doped β-Ga2O3 epitaxial layers with different layer thicknesses has been deuterated and investigated by vibrational spectroscopy to provide new evidence for the assignment of a line at 2577 cm−1 to an OD–Si complex. The vibrational properties of several of the reported OD-impurity complexes are consistent with the existence of a family of defects with a VGa1ic−D center at their core that is perturbed by a nearby impurity.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Teherani, Ferechteh H ; Rogers, David J (Ed.)
    Free, publicly-accessible full text available March 15, 2025
  3. β-Ga2O3 is an ultrawide bandgap semiconductor that is attracting much attention for applications in next-generation high-power, deep UV, and extreme-environment devices. Hydrogen impurities have been found to have a strong effect on the electrical properties of β-Ga2O3. This Tutorial is a survey of what has been learned about O–H centers in β-Ga2O3 from their vibrational properties. More than a dozen, O–H centers have been discovered by infrared absorption spectroscopy. Theory predicts defect structures with H trapped at split configurations of a Ga(1) vacancy that are consistent with the isotope and polarization dependence of the O–H vibrational spectra that have been measured by experiment. Furthermore, O–H centers in β-Ga2O3 have been found to evolve upon thermal annealing, giving defect reactions that modify conductivity. While much progress has been made toward understanding the microscopic properties and reactions of O–H centers in β-Ga2O3, many questions are discussed that remain unanswered. A goal of this Tutorial is to inspire future research that might solve these puzzles.

     
    more » « less
    Free, publicly-accessible full text available March 14, 2025
  4. β-Ga2O3 has attracted much recent attention as a promising ultrawide bandgap semiconductor. Hydrogen can affect the conductivity of β-Ga2O3 through the introduction of shallow donors and the passivation of deep acceptors. The introduction of H or D into β-Ga2O3 by annealing in an H2 or D2 ambient at elevated temperature produces different classes of O–H or O–D centers. This work is a study of the interaction of D with VGa1 and VGa2 deep acceptors as well as other impurities and native defects in Ga2O3 by infrared spectroscopy and the complementary theory. (We focus primarily on the deuterium isotope of hydrogen because the vibrational modes of O–D centers can be detected with a higher signal-to-noise ratio than those of O–H.) O–D centers in β-Ga2O3 evolve upon annealing in an inert ambient and are transformed from one type of O–D center into another. These reactions affect the compensation of unintentional shallow donors by deep acceptors that are passivated by D. Defects involving additional impurities in β-Ga2O3 compete with VGa deep acceptors for D and modify the deuterium-related reactions that occur. The defect reactions that occur when D is introduced by annealing in a D2 ambient appear to be simpler than those observed for other introduction methods and provide a foundation for understanding the D-related reactions that can occur in more complicated situations. 
    more » « less
  5. While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines.

     
    more » « less
  6. Substitutional impurities in Ga2O3 are used to make the material n-type or semi-insulating. Several O-D vibrational lines for OD-impurity complexes that involve impurities that are shallow donors and deep acceptors have been reported recently. The present paper compares and contrasts the vibrational properties of complexes that involve shallow donors (OD-Si and OD-Ge) with complexes that involve deep acceptors (OD-Fe and OD-Mg). Complementary theory investigates the microscopic structures of defects that can explain the observed vibrational properties. 
    more » « less