skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gnedin, Nickolay Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use a suite of hydrodynamics simulations of the interstellar medium (ISM) within a galactic disk, which includes radiative transfer, a nonequilibrium model of molecular hydrogen, and a realistic model for star formation and feedback, to study the structure of the ISM and H2abundance as a function of local ISM properties. We show that the star formation rate and structure of the ISM are sensitive to the metallicity of the gas with a progressively smoother density distribution with decreasing metallicity. In addition to the well-known trend of the HI–H2transition shifting to higher densities with decreasing metallicity, the maximum achieved molecular fraction in the ISM drops drastically atZ≲ 0.2Zas the formation time of H2becomes much longer than a typical lifetime of dense regions of the ISM. We present accurate fitting formulae for both volumetric and projected f H 2 measured on different scales as a function of gas metallicity, UV radiation field, and gas density. We show that when the formulae are applied to the patches in the simulated galaxy, the overall molecular gas mass is reproduced to better than a factor of ≲1.5 across the entire range of metallicities and scales. We also show that the presented fit is considerably more accurate than any of the previous f H 2 models and fitting formulae in the low-metallicity regime. The fit can thus be used for modeling molecular gas in low-resolution simulations and semi-analytic models of galaxy formation in the dwarf and high-redshift regimes. 
    more » « less
  2. We analyze high-resolution hydrodynamics simulations of an isolated disk dwarf galaxy with an explicit model for unresolved turbulence and turbulence-based star formation prescription. We examine the characteristic values of the star formation efficiency per free-fall time, ϵ f f , and its variations with local environment properties, such as metallicity, UV flux, and surface density. We show that the star formation efficiency per free-fall time in 10 pc star-forming regions of the simulated disks has values in the range ϵ f f 0.01 0.1 , similar to observational estimates, with no trend with metallicity and only a weak trend with the UV flux. Likewise, estimated using projected patches of 500 pc size does not vary with metallicity and shows only a weak trend with average UV flux and gas surface density. The characteristic values of ϵ f f 0.01 0.1 arise naturally in the simulations via the combined effect of dynamical gas compression and ensuing stellar feedback that injects thermal and turbulent energy. The compression and feedback regulate the virial parameter, α v i r , in star-forming regions, limiting it to α v i r 3 10 . Turbulence plays an important role in the universality of ϵ f f because turbulent energy and its dissipation are not sensitive to metallicity and UV flux that affect thermal energy. Our results indicate that the universality of observational estimates of ϵ f f can be plausibly explained by the turbulence-driven and feedback-regulated properties of star-forming regions. 
    more » « less
  3. ABSTRACT We examine the evolution of the phase diagram of the low-density intergalactic medium during the Epoch of Reionization in simulation boxes with varying reionization histories from the Cosmic Reionization on Computers project. The probability density function (PDF) of gas temperature at fixed density exhibits two clear modes: a warm and a cold temperature mode, corresponding to the gas inside and outside of ionized bubbles. We find that the transition between the two modes is ‘universal’ in the sense that its timing is accurately parametrized by the value of the volume-weighted neutral fraction for any reionization history. This ‘universality’ is more complex than just a reflection of the fact that ionized gas is warm and neutral gas is cold: it holds for the transition at a fixed value of gas density, and gas at different densities transitions from the cold to the warm mode at different values of the neutral fraction, reflecting a non-trivial relationship between the ionization history and the evolving gas density PDF. Furthermore, the ‘emergence’ of the tight temperature–density relation in the warm mode is also approximately ‘universally’ controlled by the volume-weighted neutral fraction for any reionization history. In particular, the ‘emergence’ of the temperature–density relation (as quantified by the rapid decrease in its width) occurs when the neutral fraction is 10−4 ≲ XH i ≲ 10−3 for any reionization history. Our results indicate that the neutral fraction is a primary quantity controlling the various properties of the temperature–density relation, regardless of reionization history. 
    more » « less
  4. ABSTRACT High-redshift quasars ionize He ii into He iii around them, heating the intergalactic medium in the process and creating large regions with elevated temperature. In this work, we demonstrate a method based on a convolutional neural network (CNN) to recover the spatial profile for T0, the temperature at the mean cosmic density, in quasar proximity zones. We train the neural network with synthetic spectra drawn from a Cosmic Reionization on Computers simulation. We discover that the simple CNN is able to recover the temperature profile with an accuracy of ≈1400 K in an idealized case of negligible observational uncertainties. We test the robustness of the CNN and discover that it is robust against the uncertainties in quasar host halo mass, quasar continuum, and ionizing flux. We also find that the CNN has good generality with regard to the hardness of quasar spectra. This shows that with noiseless spectra, one could use a simple CNN to distinguish gas inside or outside the He iii region created by the quasar. Because the size of the He iii region is closely related to the total quasar lifetime, this method has great potential in constraining the quasar lifetime on ∼Myr time-scales. However, noise poses a big problem for accuracy and could downgrade the accuracy to ≈2340 K even for very high signal-to-noise (≳50) spectra. Future studies are needed to reduce the error associated with noise to constrain the lifetimes of reionization epoch quasars with currently available data. 
    more » « less
  5. null (Ed.)
    The spatial decorrelation of dense molecular gas and young stars observed on ≲ 1 kiloparsec scales in nearby galaxies indicates rapid dispersal of star-forming regions by stellar feedback. We explore the sensitivity of this decorrelation to different processes controlling the structure of the interstellar medium, the abundance of molecular gas, star formation, and feedback in a suite of simulations of an isolated dwarf galaxy with structural properties similar to NGC300 that self-consistently model radiative transfer and molecular chemistry. Our fiducial simulation reproduces the magnitude of decorrelation and its scale dependence measured in NGC300, and we show that this agreement is due to different aspects of feedback, including H2 dissociation, gas heating by the locally variable UV field, early mechanical feedback, and supernovae. In particular, early radiative and mechanical feedback affect the correlation on ≲100 pc scales, while supernovae play a significant role on ≳100 pc scales. The correlation is also sensitive to the choice of the local star formation efficiency per freefall time, eps_ff, which provides a strong observational constraint on eps_ff when the global star formation rate is independent of its value. Finally, we explicitly show that the degree of correlation between the peaks of molecular gas and star formation density is directly related to the distribution of the lifetimes of star-forming regions. 
    more » « less
  6. Abstract Measuring the density of the intergalactic medium using quasar sight lines in the epoch of reionization is challenging due to the saturation of Ly α absorption. Near a luminous quasar, however, the enhanced radiation creates a proximity zone observable in the quasar spectra where the Ly α absorption is not saturated. In this study, we use 10 high-resolution ( R ≳ 10,000) z ∼ 6 quasar spectra from the extended XQR-30 sample to measure the density field in the quasar proximity zones. We find a variety of environments within 3 pMpc distance from the quasars. We compare the observed density cumulative distribution function (CDF) with models from the Cosmic Reionization on Computers simulation and find a good agreement between 1.5 and 3 pMpc from the quasar. This region is far away from the quasar hosts and hence approaching the mean density of the universe, which allows us to use the CDF to set constraints on the cosmological parameter σ 8 = 0.6 ± 0.3. The uncertainty is mainly due to the limited number of high-quality quasar sight lines currently available. Utilizing the more than 200 known quasars at z ≳ 6, this method will allow us to tighten the constraint on σ 8 to the percent level in the future. In the region closer to the quasar within 1.5 pMpc, we find that the density is higher than predicted in the simulation by 1.23 ± 0.17, suggesting that the typical host dark matter halo mass of a bright quasar ( M 1450 < −26.5) at z ∼ 6 is log 10 ( M h / M ⊙ ) = 12.5 − 0.7 + 0.4 . 
    more » « less