skip to main content


Title: Measuring the Density Fields around Bright Quasars at z ∼ 6 with XQR-30 Spectra
Abstract Measuring the density of the intergalactic medium using quasar sight lines in the epoch of reionization is challenging due to the saturation of Ly α absorption. Near a luminous quasar, however, the enhanced radiation creates a proximity zone observable in the quasar spectra where the Ly α absorption is not saturated. In this study, we use 10 high-resolution ( R ≳ 10,000) z ∼ 6 quasar spectra from the extended XQR-30 sample to measure the density field in the quasar proximity zones. We find a variety of environments within 3 pMpc distance from the quasars. We compare the observed density cumulative distribution function (CDF) with models from the Cosmic Reionization on Computers simulation and find a good agreement between 1.5 and 3 pMpc from the quasar. This region is far away from the quasar hosts and hence approaching the mean density of the universe, which allows us to use the CDF to set constraints on the cosmological parameter σ 8 = 0.6 ± 0.3. The uncertainty is mainly due to the limited number of high-quality quasar sight lines currently available. Utilizing the more than 200 known quasars at z ≳ 6, this method will allow us to tighten the constraint on σ 8 to the percent level in the future. In the region closer to the quasar within 1.5 pMpc, we find that the density is higher than predicted in the simulation by 1.23 ± 0.17, suggesting that the typical host dark matter halo mass of a bright quasar ( M 1450 < −26.5) at z ∼ 6 is log 10 ( M h / M ⊙ ) = 12.5 − 0.7 + 0.4 .  more » « less
Award ID(s):
1751404 1908284
NSF-PAR ID:
10342950
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
931
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Proximity zones of high-redshift quasars are unique probes of their central supermassive black holes as well as the intergalactic medium (IGM) in the last stages of reionization. We present 22 new measurements of proximity zones of quasars with redshifts between 5.8 and 6.6, using the enlarged XQR-30 sample of high-resolution, high-SNR quasar spectra. The quasars in our sample have ultraviolet magnitudes of M1450 ∼ −27 and black hole masses of 109–1010 M⊙. Our inferred proximity zone sizes are 2–7 physical Mpc, with a typical uncertainty of less than 0.5 physical Mpc, which, for the first time, also includes uncertainty in the quasar continuum. We find that the correlation between proximity zone sizes and the quasar redshift, luminosity, or black hole mass, indicates a large diversity of quasar lifetimes. Two of our proximity zone sizes are exceptionally small. The spectrum of one of these quasars, with z  = 6.02, displays, unusually for this redshift, damping wing absorption without any detectable metal lines, which could potentially originate from the IGM. The other quasar has a high-ionization absorber ∼0.5 pMpc from the edge of the proximity zone. This work increases the number of proximity zone measurements available in the last stages of cosmic reionization to 87. This data will lead to better constraints on quasar lifetimes and obscuration fractions at high redshift, that in turn will help probe the seed mass and formation redshift of supermassive black holes.

     
    more » « less
  2. Abstract The absorption by neutral hydrogen in the intergalactic medium (IGM) produces the Ly α forest in the spectra of quasars. The Ly α forest absorbers have a broad distribution of neutral hydrogen column density N H I and Doppler b parameter. The narrowest Ly α absorption lines (of lowest b ) with neutral hydrogen column density above ∼10 13 cm −2 are dominated by thermal broadening, which can be used to constrain the thermal state of the IGM. Here we constrain the temperature-density relation T = T 0 ( ρ / ρ ¯ ) γ − 1 of the IGM at 1.6 < z < 3.6 by using N H I and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N H I -dependent low- b cutoff in the b distribution. In each N H I bin, the b cutoff is estimated using two methods, one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution. We find that the IGM temperature T 0 at the mean gas density ρ ¯ shows a peak of ∼1.5 × 10 4 K at z ∼ 2.7–2.9. At redshift higher than this, the index γ approximately remains constant, and it starts to increase toward lower redshifts. The evolution in both parameters is in good agreement with constraints from completely different approaches, which signals that He ii reionization completes around z ∼ 3. 
    more » « less
  3. Abstract

    Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.

     
    more » « less
  4. Abstract Based on Sloan Digital Sky Survey Data Release 16, we have detected the large-scale structure of Ly α emission in the universe at redshifts z = 2–3.5 by cross-correlating quasar positions and Ly α emission imprinted in the residual spectra of luminous red galaxies. We apply an analytical model to fit the corresponding Ly α surface brightness profile and multipoles of the redshift-space quasar–Ly α emission cross-correlation function. The model suggests an average cosmic Ly α luminosity density of 6.6 − 3.1 + 3.3 × 10 40 erg s − 1 cMpc − 3 , a ∼2 σ detection with a median value about 8–9 times those estimated from deep narrowband surveys of Ly α emitters at similar redshifts. Although the low signal-to-noise ratio prevents us from a significant detection of the Ly α forest–Ly α emission cross-correlation, the measurement is consistent with the prediction of our best-fit model from quasar–Ly α emission cross-correlation within current uncertainties. We rule out the scenario where the Ly α photons mainly originate from quasars. We find that Ly α emission from star-forming galaxies, including contributions from that concentrated around the galaxy centers and that in diffuse Ly α -emitting halos, is able to explain the bulk of the Ly α luminosity density inferred from our measurements. Ongoing and future surveys can further improve the measurements and advance our understanding of the cosmic Ly α emission field. 
    more » « less
  5. ABSTRACT

    We study quasar proximity zones in a simulation that includes a self-consistent quasar formation model and realistic intergalactic medium (IGM) environments. The quasar host halo is 1013 M⊙ at z = 6, more massive than typical halos studied in previous work. Between 6 < z < 7.5, the quasar luminosity varies rapidly, with a mean magnitude of MUV, mean = −24.8 and the fluctuation reaching up to two orders of magnitude. Using this light curve to post-process the dense environment around the quasar, we find that the proximity zone size (Rp) ranges between 0.5 and 5 pMpc. We show that the light curve variability causes a similar degree of scatter in Rp as does the density fluctuation, both of which result in a standard deviation of ∼0.3 pMpc. The Rp traces the light curve fluctuations closely but with a time delay of ∼104 yr, breaking the correspondence between the Rp and the contemporaneous MUV. This also indicates that we can only infer quasar activity within the past ∼104 yr instead of the integrated lifetime from Rp in the later part of cosmic reionization. Compared with the variable light curve, a constant light curve underestimates the Rp by 13 per cent at the dim end (MUV ∼ −23.5), and overestimates the Rp by 30 per cent at the bright end (MUV ∼ −26). By calculating the Rp generated by a number of quasars, we show that variable light curves predict a wider Rp distribution than lightbulb models, and readily explain the extremely small Rp values that have been observed.

     
    more » « less