Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
This content will become publicly available on May 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10342950
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 1
- Page Range or eLocation-ID:
- 29
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz = 6–7 is poorly constrained. We present new constraints on atz ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1σ ), (1σ ), and (1σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. -
ABSTRACT We compare a sample of five high-resolution, high S/N Ly α forest spectra of bright 6 < z < ∼6.5 QSOs aimed at spectrally resolving the last remaining transmission spikes at z > 5 with those obtained from mock absorption spectra from the Sherwoodand Sherwood–Relics simulation suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile-fitting procedure for the inverted transmitted flux, 1 − F, similar to the widely used Voigt profile fitting of the transmitted flux F at lower redshifts, to characterize the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominent in low temperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution (≤ 8 km s−1) to be resolved, is reproduced for optically thinmore »
-
ABSTRACT Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Lymore »
-
ABSTRACT Since the discovery of z ∼ 6 quasars two decades ago, studies of their Ly α-transparent proximity zones have largely focused on their utility as a probe of cosmic reionization. But even when in a highly ionized intergalactic medium, these zones provide a rich laboratory for determining the time-scales that govern quasar activity and the concomitant growth of their supermassive black holes. In this work, we use a suite of 1D radiative transfer simulations of quasar proximity zones to explore their time-dependent behaviour for activity time-scales from ∼103 to 108 yr. The sizes of the simulated proximity zones, as quantified by the distance at which the smoothed Ly α transmission drops below 10 per cent (denoted Rp), are in excellent agreement with observations, with the exception of a handful of particularly small zones that have been attributed to extremely short ≲104 lifetimes. We develop a physically motivated semi-analytic model of proximity zones which captures the bulk of their equilibrium and non-equilibrium behaviour, and use this model to investigate how quasar variability on ≲105 yr time-scales is imprinted on the distribution of observed proximity zone sizes. We show that large variations in the ionizing luminosity of quasars on time-scales of ≲104 yr are disfavoured based onmore »
-
Abstract We present the results from a spectroscopic survey using the MOSFIRE near-infrared spectrograph on the 10 m Keck telescope to search for Ly
α emission from candidate galaxies atz ∼ 9–10 in four of the CANDELS fields (GOODS-N, EGS, UDS, and COSMOS). We observed 11 target galaxies, detecting Lyα from one object in ∼8.1 hr of integration, atz = 8.665 ± 0.001 with an integrated signal-to-noise ratio > 7. This galaxy is in the CANDELS Extended Groth Strip (EGS) field and lies physically close (3.5 physical Mpc [pMpc]) to another confirmed galaxy in this field with Lyα detected atz = 8.683. The detection of Lyα suggests the existence of large (∼1 pMpc) ionized bubbles fairly early in the reionization process. We explore the ionizing output needed to create bubbles of this size at this epoch and find that such a bubble requires more than the ionizing power provided by the full expected population of galaxies (by integrating the UV luminosity function down toM UV= −13). The Lyα we detect would be able to escape the predominantly neutral intergalactic medium at this epoch if our detected galaxy is inhabiting an overdensity, which would be consistent with the photometric overdensity previously identified in this region by Finkelstein et al. This impliesmore »