Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
ABSTRACT Our objective is to improve the view of the seismicity in the Caucasus region using instrumental data between 1951 and 2019. To create a comprehensive catalog, we combine the bulletins of local agencies and the International Seismological Centre, and use an advanced single-event location algorithm, iLoc, to obtain better locations. We show that relocations with iLoc, using travel-time predictions from the 3D upper mantle velocity model, Regional Seismic Travel Time, improve the locations. Then, using the iLoc results as initial locations and the ground-truth events identified in the iLoc results as fix points, we apply Bayesloc, a multiple-event location algorithm, to simultaneously relocate the entire seismicity of the Caucasus region. We demonstrate that the simultaneous relocation of the seismicity with Bayesloc clarifies the location and geometry of major active structures accommodating ongoing convergence between the Arabian and Eurasian continents between the Black and Caspian Seas. Among our major findings is the confirmation of widespread seismicity in the mantle beneath the northern flank of the Greater Caucasus and central Caspian, resulting from north-dipping subduction of the Kura and South Caspian basins and the identification of a discrete band of crustal seismicity beneath the southern flank of the Greater Caucasus.more » « less
-
ABSTRACT Fault characterization is a critical step toward improving seismic hazard assessment in the Georgian Greater Caucasus but is largely absent from the region. Here, a paleoseismic trench near the capital city of Tbilisi revealed evidence for recurring surface rupture on a shallowly north-dipping thrust fault. The fault has broken through the overturned forelimb of a fault-propagation anticline that folds a sequence of soils and deposits. Stratigraphic relationships and radiocarbon dating of terrestrial gastropod shells corrected for “old carbon” age anomalies loosely constrain three surface-deforming earthquakes on this fault between ∼40 and ∼3 ka, with variable dip-slip displacements ranging between 0.35 and ∼3 m, and a cumulative displacement of 6.5 ± 0.85 m. Single event slips and recurrence intervals (11, 25, and 3 ka open interval) at this site demonstrate apparent slip rate variations of 3−7× over the last two earthquake cycles on the fault, which we attribute to possible rupture complexity involved in crustal thrust fault earthquakes. This study provides a structural and geochronologic template for future paleoseismic investigations in the Greater Caucasus while highlighting some of the challenges of conducting seismic source characterization in this region.more » « less
-
Abstract Although the Greater Caucasus Mountains have played a central role in absorbing late Cenozoic convergence between the Arabian and Eurasian plates, the orogenic architecture and the ways in which it accommodates modern shortening remain debated. Here, we addressed this problem using geologic mapping along two transects across the southern half of the western Greater Caucasus to reveal a suite of regionally coherent stratigraphic packages that are juxtaposed across a series of thrust faults, which we call the North Georgia fault system. From south to north within this system, stratigraphically repeated ~5–10-km-thick thrust sheets show systematically increasing bedding dip angles (<30° in the south to subvertical in the core of the range). Likewise, exhumation depth increases toward the core of the range, based on low-temperature thermochronologic data and metamorphic grade of exposed rocks. In contrast, active shortening in the modern system is accommodated, at least in part, by thrust faults along the southern margin of the orogen. Facilitated by the North Georgia fault system, the western Greater Caucasus Mountains broadly behave as an in-sequence, southward-propagating imbricate thrust fan, with older faults within the range progressively abandoned and new structures forming to accommodate shortening as the thrust propagates southward. We suggest that the single-fault-centric “Main Caucasus thrust” paradigm is no longer appropriate, as it is a system of faults, the North Georgia fault system, that dominates the architecture of the western Greater Caucasus Mountains.more » « less
-
Abstract Convergent margins play a fundamental role in the construction and modification of Earth's lithosphere and are characterized by poorly understood episodic processes that occur during the progression from subduction to terminal collision. On the northern margin of the active Arabia‐Eurasia collision zone, the Greater Caucasus Mountains provide an opportunity to study a protracted convergent margin that spanned most of the Phanerozoic and culminated in Cenozoic continental collision. However, the main episodes of lithosphere formation and deformation along this margin remain enigmatic. Here, we use detrital zircon U–Pb geochronology from Paleozoic and Mesozoic (meta)sedimentary rocks in the Greater Caucasus, along with select zircon U–Pb and Hf isotopic data from coeval igneous rocks, to link key magmatic and depositional episodes along the Caucasus convergent margin. Devonian to Early Carboniferous rocks were deposited prior to Late Carboniferous accretion of the Greater Caucasus crystalline core onto the Laurussian margin. Permian to Triassic rocks document a period of northward subduction and forearc deposition south of a continental margin volcanic arc in the Northern Caucasus and Scythian Platform. Jurassic rocks record the opening of the Caucasus Basin as a back‐arc rift during southward migration of the arc front into the Lesser Caucasus. Cretaceous rocks have few Jurassic‐Cretaceous zircons, indicating a period of relative magmatic quiescence and minimal exhumation within this basin. Late Cenozoic closure of the Caucasus Basin juxtaposed the Lesser Caucasus arc to the south against the crystalline core of the Greater Caucasus to the north and led to the formation of a hypothesized terminal suture. We expect this suture to be within ~20 km of the southern range front of the Greater Caucasus because all analysed rocks to the north exhibit a provenance affinity with the crystalline core of the Greater Caucasus.more » « less
An official website of the United States government
