skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Godoy, Pedro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Caimaninae is one of the few crocodylian lineages that still has living representatives. Today, most of its six extant species are restricted to South and Central America. However, recent discoveries have revealed a more complex evolutionary history, with a fossil record richer than previously thought and a possible North American origin. Among the oldest caimanines isEocaiman cavernensis, from the Eocene of Patagonia, Argentina. It was described by George G. Simpson in the 1930s, representing the first caimanine reported for the Palaeogene. Since then,E. cavernensishas been ubiquitous in phylogenetic studies on the group, but a more detailed morphological description and revision of the taxon were lacking. Here, we present a reassessment ofE. cavernensis, based on first‐hand examination and micro‐computed tomography of the holotype, and reinterpret different aspects of its morphology. We explore the phylogenetic affinities ofE. cavernensisand other caimanines using parsimony and Bayesian inference approaches. Our results provide evidence for a monophyleticEocaimangenus within Caimaninae, even though some highly incomplete taxa (including the congenericEocaiman itaboraiensis) represent significant sources of phylogenetic instability. We also foundCulebrasuchus mesoamericanusas sister to all other caimanines and the North American globidontans (i.e.Brachychampsaand closer relatives) outside Caimaninae. A time‐calibrated tree, obtained using a fossilized birth–death model, shows a possible Campanian origin for the group (76.97 ± 6.7 Ma), which is older than the age estimated using molecular data, and suggests that the earliest cladogenetic events of caimanines took place rapidly and across the K–Pg boundary. 
    more » « less
  2. Abstract Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropodAllosaurus fragilisand the living crocodylianAlligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi‐arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa. 
    more » « less