skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Goldfarb, Daniella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell.

     
    more » « less
  2. Abstract

    Studies of protein structure and dynamics are usually carried out in dilute buffer solutions, conditions that differ significantly from the crowded environment in the cell. The double electron‐electron resonance (DEER) technique can track proteins’ conformations in the cell by providing distance distributions between two attached spin labels. This technique, however, cannot access distances below 1.8 nm. Here, we show that GdIII19F Mims electron‐nuclear double resonance (ENDOR) measurements can cover part of this short range. Low temperature solution and in‐cell ENDOR measurements, complemented with room temperature solution and in‐cell GdIII19F PRE (paramagnetic relaxation enhancement) NMR measurements, were performed on fluorinated GB1 and ubiquitin (Ub), spin‐labeled with rigid GdIIItags. The proteins were delivered into human cells via electroporation. The solution and in‐cell derived GdIII19F distances were essentially identical and lie in the 1–1.5 nm range revealing that both, GB1 and Ub, retained their overall structure in the GdIIIand19F regions in the cell.

     
    more » « less
  3. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd 3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA–spacer–Gd-PyMTA, with Gd–Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |−1/2〉 → |1/2〉 transition occurs at 30 K for Gd–Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/ r 3 dependence for the electron–electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron–electron dipolar interactions with a neighboring S = 7/2 spin. 
    more » « less