skip to main content

Search for: All records

Creators/Authors contains: "Goldstein, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 22, 2025
  2. Free, publicly-accessible full text available September 1, 2024
  3. Data that influence policy and major investment decisions risk entrenching social and political inequities

    more » « less
    Free, publicly-accessible full text available January 5, 2025
  4. Free, publicly-accessible full text available February 1, 2025
  5. Abstract Aim

    As climate change increases the frequency and severity of droughts in many regions, conservation during drought is becoming a major challenge for ecologists. Droughts are multidimensional climate events whose impacts may be moderated by changes in temperature, water availability or food availability, or some combination of these. Simultaneously, other stressors such as extensive anthropogenic landscape modification may synergize with drought. Useful observational models for guiding conservation decision‐making during drought require multidimensional, dynamic representations to disentangle possible drought impacts, and consequently, they will require large, highly resolved data sets. In this paper, we develop a two‐stage predictive framework for assessing how drought impacts vary with species, habitats and climate pathways.


    Central Valley, California, USA.


    We used a two‐stage counterfactual analysis combining predictive linear mixed models and N‐mixture models to characterize the multidimensional impacts of drought on 66 bird species. We analysed counts from the eBird participatory science data set between 2010 and 2019 and produced species‐ and habitat‐specific estimates of the impact of drought on relative abundance.


    We found that while fewer than a quarter (16/66) of species experienced abundance declines during drought, nearly half of all species (27/66) changed their habitat associations during drought. Among species that shifted their habitat associations, the use of natural habitats declined during drought while use of developed habitat and perennial agricultural habitat increased.

    Main Conclusions

    Our findings suggest that birds take advantage of agricultural and developed land with artificial irrigation and heat‐buffering microhabitat structure, such as in orchards or parks, to buffer drought impacts. A working lands approach that promotes biodiversity and mitigates stressors across a human‐induced water gradient will be critical for conserving birds during drought.

    more » « less
  6. Abstract

    There is a lack of data on resources used and food produced at urban farms. This hampers attempts to quantify the environmental impacts of urban agriculture or craft policies for sustainable food production in cities. To address this gap, we used a citizen science approach to collect data from 72 urban agriculture sites, representing three types of spaces (urban farms, collective gardens, individual gardens), in five countries (France, Germany, Poland, United Kingdom, and United States). We answered three key questions about urban agriculture with this unprecedented dataset: (1) What are its land, water, nutrient, and energy demands? (2) How productive is it relative to conventional agriculture and across types of farms? and (3) What are its contributions to local biodiversity? We found that participant farms used dozens of inputs, most of which were organic (e.g., manure for fertilizers). Farms required on average 71.6 L of irrigation water, 5.5 L of compost, and 0.53 m2 of land per kilogram of harvested food. Irrigation was lower in individual gardens and higher in sites using drip irrigation. While extremely variable, yields at well-managed urban farms can exceed those of conventional counterparts. Although farm type did not predict yield, our cluster analysis demonstrated that individually managed leisure gardens had lower yields than other farms and gardens. Farms in our sample contributed significantly to local biodiversity, with an average of 20 different crops per farm not including ornamental plants. Aside from clarifying important trends in resource use at urban farms using a robust and open dataset, this study also raises numerous questions about how crop selection and growing practices influence the environmental impacts of growing food in cities. We conclude with a research agenda to tackle these and other pressing questions on resource use at urban farms.

    more » « less
  7. Abstract Environmental merits are a common motivation for many urban agriculture (UA) projects. One powerful way of quantifying environmental impacts is with life cycle assessment (LCA): a method that estimates the environmental impacts of producing, using, and disposing of a good. LCAs of UA have proliferated in recent years, evaluating a diverse range of UA systems and generating mixed conclusions about their environmental performance. To clarify the varied literature, we performed a systematic review of LCAs of UA to answer the following questions: What is the scope of available LCAs of UA (geographic, crop choice, system type)? What is the environmental performance and resource intensity of diverse forms of UA? How have these LCAs been done, and does the quality and consistency allow the evidence to support decision making? We searched for original, peer-reviewed LCAs of agricultural production at UA systems, and selected and evaluated 47 papers fitting our analysis criteria, covering 88 different farms and 259 production systems. Focusing on yield, water consumption, greenhouse gas emissions, and cumulative energy demand, using functional units based on mass of crops grown and land occupied, we found a wide range of results. We summarized baseline ranges, identified trends across UA profiles, and highlighted the most impactful parts of different systems. There were examples of all types of systems—across physical set up, crop type, and socio-economic orientation—achieving low and high impacts and yields, and performing better or worse than conventional agriculture. However, issues with the quality and consistency of the LCAs, the use of conventional agriculture data in UA settings, and the high variability in their results prevented us from drawing definitive conclusions about the environmental impacts and resource use of UA. We provided guidelines for improving LCAs of UA, and make a strong case that more research on this topic is necessary to improve our understanding of the environmental impacts and benefits of UA. 
    more » « less
  8. Despite extensive literature on the socio-cultural services of urban open spaces, the role of food-producing spaces has not received sufficient attention. This hampers advocacy for preserving and growing urban agricultural activities, often dismissed on justifications that their contributions to overall food supply are negligible. To understand how the social benefits of urban agriculture have been measured, we conducted a systematic review of 272 peer-reviewed publications, which drew on insights from urban agriculture sites in 57 different countries. Through content analysis, we investigated socio-cultural benefits in four spheres: engaged and cohesive communities, health and well-being, economic opportunities, and education. The analysis revealed growth in research on the social impacts of gardens and farms, with most studies measuring the effects on community cohesion and engagement, followed by increased availability and consumption of fruits and vegetables associated with reduced food insecurity and better health. Fewer studies assessed the impact of urban farming on educational and economic outcomes. Quantifying the multiple ways in which urban agriculture provides benefits to people will empower planners and the private sector to justify future investments. These findings are also informative for research theorizing cities as socio-ecological systems and broader efforts to measure the benefits of urban agriculture, in its many forms. 
    more » « less
  9. Abstract

    Over 70% of the 62 million hectares of cropland in the Midwestern United States is grown in corn-based rotations. These crop rotations are caught in a century-long simplification trend despite robust evidence demonstrating yield and soil benefits from diversified rotations. Our ability to explore and explain this trend will come in part from observing the biophysical and policy influences on farmers’ crop choices at one key level of management: the field. Yet field-level crop rotation patterns remain largely unstudied at regional scales and will be essential for understanding how national agricultural policy manifests locally and interacts with biophysical phenomena to erode—or bolster—soil and environmental health, agricultural resilience, and farmers’ livelihoods. We developed a novel indicator of crop rotational complexity and applied it to 1.5 million fields across the US Midwest. We used bootstrapped linear mixed models to regress field-level rotational complexity against biophysical (land capability, precipitation) and policy-driven (distance to the nearest biofuel plant and grain elevator) factors. After accounting for spatial autocorrelation, there were statistically clear negative relationships between rotational complexity and biophysical factors (land capability and precipitation during the growing season), indicating decreased rotation in prime growing areas. A positive relationship between rotational complexity and distance to the nearest biofuel plant suggests policy-based, as well as biophysical, constraints on regional rotations. This novel RCI is a promising tool for future fine-scale rotational analysis and demonstrates that the United States’ most fertile soils are the most prone to degradation, with recent policy choices further exacerbating this trend.

    more » « less